

LABORATORI

LAB N° 0110 L

Pagina 1 di 3

RAPPORTO DI PROVA N.24080018

Prova richiesta da: COMUNE DI GIUGLIANO IN CAMPANIA

Corso Campano, 200 80014 Giugliano in Campania

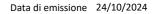
Matrice: ACQUE DESTINATE AL CONSUMO UMANO

Descrizione del campione: Rubinetto fuoriterra muro Cimitero

Prelevato il: 14/10/2024

Prelevato da: RTI HYDROLAB STANTE per conto Heratech Laboratori

I.O. di Campionamento: PT06 Rev. in vigore *


Consegnato il: 15/10/2024

Data inizio analisi campione: 15/10/2024 Data fine analisi campione: 23/10/2024

Riferimenti Normativi: (1) D.Lgs 18/2023

Parametro	Unità di misura	Risultato	Incertezza	Recupero %	Limite Min	Limite Max	Rif. N	Note
Metodo					Data iniz	zio analisi	Data fine analisi	
PARAMETRI BIOLOGICI E TOSSICO	LOGICI							
CLOSTRIDIUM PERFRINGENS (SPORE COMPRESE)	UFC/100 mL	0				0	(1)	А
UNI EN ISO 14189:2016		° 15/10/2024 16/10/2024						
ANALISI MICROBIOLOGICHE								
BATTERI COLIFORMI	UFC/100 mL	0				0	(1)	Α
UNI EN ISO 9308-1:2017	•				° 15/	10/2024	16/10/2	024
CONTEGGIO DELLE COLONIE A 22°C	UFC/mL	0						Α
UNI EN ISO 6222:2001	•						18/10/2	024
ESCHERICHIA COLI	UFC/100 mL	0				0	(1)	Α
UNI EN ISO 9308-1:2017					° 15/	10/2024	16/10/2	024

Documento firmato digitalmente ai sensi della normativa vigente da:

Pagina 2 di 3

LAB N° 0110 L

RAPPORTO DI PROVA N.24080018

Parametro	Unità di misura	Risultato	Incertezza	Recupero %	Limite Min	Limite Max	Rif. N	No	ote
Metodo					Data ini:	zio analisi	Data fine a	analisi	
MISURE ESEGUITE SUL CAMPO									
CLORO RESIDUO LIBERO	mg/L	0,14	± 0,04						#*
APAT CNR IRSA 4080 Man 29 2003									
TORBIDITA`	NTU	0,29	± 0,03			1	(1)		# *
APAT CNR IRSA 2110 Man 29 2003									
PARAMETRI FISICI, CHIMICI E CHII	MICO-FISICI								
COLORE	unità Pt/Co	< 5						Α	
APAT CNR IRSA 2020 C Man 29 2003					° 16,	/10/2024	16/10/2	024	
CONCENTRAZIONE IONI IDROGENO	unità pH a 20°C	7,42	± 0,20		6,5	9,5	(1)	Α	
APAT CNR IRSA 2060 Man 29 2003					° 15,	/10/2024	16/10/2024		
CONDUTTIVITA`	μS/cm a 20°C	754	± 75			2500	(1)	Α	
APAT CNR IRSA 2030 Man 29 2003					° 15,	/10/2024	16/10/2024		
ODORE	TASSO DI DILUIZIONE	< 1						А	*
APAT CNR IRSA 2050 Man 29 2003					° 15,	/10/2024	15/10/2	024	
SAPORE	-	INSAPORE							# *
APAT CNR IRSA 2080 Man 29 2003					° 15,	/10/2024	23/10/2	024	
TIPO DI ODORE	-	ASSENTE						Α	*
APAT CNR IRSA 2050 Man 29 2003					° 15,	/10/2024	15/10/2	024	
METALLI E SPECIE METALLICHE									
FERRO	μg/L	31	± 8			200	(1)	Α	T
UNI EN ISO 15587-2:2002 + UNI EN ISO 17294-2:202	3		-		° 15,	/10/2024	23/10/2	024	

Documento firmato digitalmente ai sensi della normativa vigente da:

dott. Paolo Morelli Responsabile Settore Acque Ordine Interprovinciale dei Chimici dell'Emilia Romagna Iscrizione n° A 1555

Documento firmato digitalmente ai sensi della normativa vigente da:

Pagina 3 di 3

LAB N° 0110 L

RAPPORTO DI PROVA N.24080018

NOTE:

- Il presente rapporto di prova si riferisce esclusivamente ai campioni sottoposti a prova. Il laboratorio non è responsabile dell'identificazione del campione e della data di prelievo se non ne ha effettuato il campionamento e la consegna: i risultati si riferiscono al campione così come ricevuto.
- Il presente rapporto di prova non può essere riprodotto parzialmente senza autorizzazione scritta del laboratorio.
- Documento con firma digitale avanzata ai sensi della normativa vigente.
- I metodi di prova relativi al presente documento sono disponibili per la consultazione a richiesta del cliente.
- I dettagli relativi al campionamento sono registrati sul foglio di prelievo disponibile presso il laboratorio.
- Per le prove chimiche e radiochimiche l'incertezza estesa è calcolata in accordo con il documento ACCREDIA DT-0002 Rev. 1 2000; per tutte le prove si utilizza il fattore di copertura K = 2 ed una probabilità p = 0,95.
- Per le prove microbiologiche l'incertezza è calcolata come intervallo di confidenza al 95%.
- Ai fini del calcolo dell'incertezza della sommatoria di più prove, l'incertezza di una prova con valore <LQ è considerata nulla.
- Il fattore di recupero è riportato nel rapporto di prova quando è espressamente richiesto da Cliente. Ove non espressamente indicato, il recupero non è stato utilizzato nei calcoli.
- Nel caso di metodi che prevedono fasi di estrazione/purificazione, ove non espressamente indicato, il valore di recupero è da intendersi compreso all'intervallo dei limiti di accettabilità specifici.
- Per la prova Sommatoria il criterio utilizzato è Lower Bound ovvero i composti < LQ sono considerati pari a 0 e il limite di quantificazione è pari al maggiore dei LQ dei singoli parametri costituenti la Sommatoria stessa.
- La Revisione del Rapporto di Prova sostituisce e annulla il documento precedente.
- Per il campionamento eseguito da Heratech il numero del Verbale di Campionamento corrisponde al codice di identificazione campione (ID), diversamente sarà indicato il riferimento al verbale nel campo 'NOTE SUL CAMPIONE'.
- Il campo 'Data fine analisi' della prova indica la data di registrazione del risultato nel sistema informatico LIMS.
- Il valore di LQ riportato è corretto per i fattori di scala, quali pesate e diluizioni.
- Nel caso di campionamento effettuato da personale HERAtech Laboratori, esso è accreditato per le seguenti matrici e con i seguenti metodi: Acque destinate al consumo umano APATCNR IRSA 1030 Man 29 2003

Acque di scarico APATCNR IRSA 1030 Man 29 2003

Superfici ambienti del settore alimentare ISO 18593:2018

Rifiuti UNI 10802:2013

Suoli DM 13/09/1999 SO n 185 GU n 248 21/10/1999 Met I.1

- Le prove riportate in questo rapporto di prova contrassegnate, nella colonna note:
- con il simbolo A sono eseguite presso laboratorio Bologna, Via Setta n. 4 40037 Sasso Marconi (BO)
- con il simbolo * non rientrano nell'accreditamento ACCREDIA di questo laboratorio. Le modalità descritte nell'1.09.00 Campionamento non sono oggetto di accreditamento. Per il campione delle emissione i riferimenti all'accreditamento sono individuabili in ogni metodo di prova.
- con il simbolo #* sono eseguite presso laboratorio terzo qualificato e sono da considerarsi non accreditate
- con il simbolo £ sono eseguite presso laboratorio terzo qualificato e sono da considerarsi Accreditate
- con il simbolo \$ sono eseguite/fornite dal cliente e riportate come informazione aggiuntiva. La responsabilità della correttezza del dato e/o dell'idoneo campionamento è completamente a carico del Cliente.
 - (°) indica che la Data inizio analisi è stata ricondotta alla data di accettazione per impossibilità di automatismi.

Per l'espressione del risultato delle prove microbiologiche di conteggio (UFC), si riporta sempre il risultato numerico (come richiesto da normativa) considerando che:

- "O colonie" corrisponde a "colonie non rilevate"
- "3-9 colonie" corrisponde a "stimate" in quanto inferiore al limite di determinazione pari a 10
- "1-2 colonie" corrispondenti a presenti. Inferiori al limite di rilevabilità pari a 3

LABORATORI

LAB N° 0110 L

Pagina 1 di 3

RAPPORTO DI PROVA N.24080011

Prova richiesta da: COMUNE DI GIUGLIANO IN CAMPANIA

Corso Campano, 200 80014 Giugliano in Campania

Matrice: ACQUE DESTINATE AL CONSUMO UMANO

Descrizione del campione: Fontanina di Piazza Annunziata (antistante Banca)

Prelevato il: 14/10/2024

Prelevato da: RTI HYDROLAB STANTE per conto Heratech Laboratori

I.O. di Campionamento: PT06 Rev. in vigore *

Consegnato il: 15/10/2024

Data inizio analisi campione: 15/10/2024 Data fine analisi campione: 23/10/2024

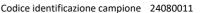
Riferimenti Normativi: (1) D.Lgs 18/2023

Parametro	Unità di misura	Risultato	Incertezza	Recupero %	Limite Min	Limite Max	Rif. N	Note
Metodo					Data iniz	zio analisi	Data fine analisi	
PARAMETRI BIOLOGICI E TOSSICO	LOGICI							
CLOSTRIDIUM PERFRINGENS (SPORE COMPRESE)	UFC/100 mL	0				0	(1)	А
UNI EN ISO 14189:2016		° 15/10/2024 16/10/2024						
ANALISI MICROBIOLOGICHE								
BATTERI COLIFORMI	UFC/100 mL	0				0	(1)	Α
UNI EN ISO 9308-1:2017	•				° 15/	10/2024	16/10/2	024
CONTEGGIO DELLE COLONIE A 22°C	UFC/mL	0						Α
UNI EN ISO 6222:2001	•						18/10/2	024
ESCHERICHIA COLI	UFC/100 mL	0				0	(1)	Α
UNI EN ISO 9308-1:2017					° 15/	10/2024	16/10/2	024

Documento firmato digitalmente ai sensi della normativa vigente da:

Pagina 2 di 3

LAB N° 0110 L


RAPPORTO DI PROVA N.24080011

Parametro	Unità di misura	Risultato	Incertezza	Recupero %	Limite Min	Limite Max	Rif. N	No	ote
Metodo					Data iniz	zio analisi	Data fine a	analisi	
MISURE ESEGUITE SUL CAMPO									
CLORO RESIDUO LIBERO	mg/L	0,13	± 0,04						#*
APAT CNR IRSA 4080 Man 29 2003									
TORBIDITA`	NTU	0,34	± 0,03			1	(1)		# *
APAT CNR IRSA 2110 Man 29 2003									
PARAMETRI FISICI, CHIMICI E CHII	MICO-FISICI								
COLORE	unità Pt/Co	< 5						Α	
APAT CNR IRSA 2020 C Man 29 2003					° 16,	/10/2024	16/10/2	024	
CONCENTRAZIONE IONI IDROGENO	unità pH a 20°C	7,33	± 0,20		6,5	9,5	(1)	Α	
APAT CNR IRSA 2060 Man 29 2003					° 15,	/10/2024	16/10/2024		
CONDUTTIVITA`	μS/cm a 20°C	754	± 75			2500	(1)	Α	
APAT CNR IRSA 2030 Man 29 2003					° 15,	/10/2024	16/10/2024		
ODORE	TASSO DI DILUIZIONE	< 1						А	*
APAT CNR IRSA 2050 Man 29 2003					° 15,	/10/2024	15/10/2	024	
SAPORE	-	INSAPORE							# *
APAT CNR IRSA 2080 Man 29 2003					° 15,	/10/2024	23/10/2	024	
TIPO DI ODORE	-	ASSENTE						Α	*
APAT CNR IRSA 2050 Man 29 2003					° 15,	/10/2024	15/10/2	024	
METALLI E SPECIE METALLICHE									
FERRO	μg/L	30	± 8			200	(1)	Α	T
UNI EN ISO 15587-2:2002 + UNI EN ISO 17294-2:202	3		-	-	° 15,	/10/2024	23/10/2	024	-

Documento firmato digitalmente ai sensi della normativa vigente da:

dott. Paolo Morelli Responsabile Settore Acque Ordine Interprovinciale dei Chimici dell'Emilia Romagna Iscrizione n° A 1555

Documento firmato digitalmente ai sensi della normativa vigente da:

LAB N° 0110 L

Pagina 3 di 3

RAPPORTO DI PROVA N.24080011

NOTE:

- Il presente rapporto di prova si riferisce esclusivamente ai campioni sottoposti a prova. Il laboratorio non è responsabile dell'identificazione del campione e della data di prelievo se non ne ha effettuato il campionamento e la consegna: i risultati si riferiscono al campione così come ricevuto.
- Il presente rapporto di prova non può essere riprodotto parzialmente senza autorizzazione scritta del laboratorio.
- Documento con firma digitale avanzata ai sensi della normativa vigente.
- I metodi di prova relativi al presente documento sono disponibili per la consultazione a richiesta del cliente.
- I dettagli relativi al campionamento sono registrati sul foglio di prelievo disponibile presso il laboratorio.
- Per le prove chimiche e radiochimiche l'incertezza estesa è calcolata in accordo con il documento ACCREDIA DT-0002 Rev. 1 2000; per tutte le prove si utilizza il fattore di copertura K = 2 ed una probabilità p = 0,95.
- Per le prove microbiologiche l'incertezza è calcolata come intervallo di confidenza al 95%.
- Ai fini del calcolo dell'incertezza della sommatoria di più prove, l'incertezza di una prova con valore <LQ è considerata nulla.
- Il fattore di recupero è riportato nel rapporto di prova quando è espressamente richiesto da Cliente. Ove non espressamente indicato, il recupero non è stato utilizzato nei calcoli.
- Nel caso di metodi che prevedono fasi di estrazione/purificazione, ove non espressamente indicato, il valore di recupero è da intendersi compreso all'intervallo dei limiti di accettabilità specifici.
- Per la prova Sommatoria il criterio utilizzato è Lower Bound ovvero i composti < LQ sono considerati pari a 0 e il limite di quantificazione è pari al maggiore dei LQ dei singoli parametri costituenti la Sommatoria stessa.
- La Revisione del Rapporto di Prova sostituisce e annulla il documento precedente.
- Per il campionamento eseguito da Heratech il numero del Verbale di Campionamento corrisponde al codice di identificazione campione (ID), diversamente sarà indicato il riferimento al verbale nel campo 'NOTE SUL CAMPIONE'.
- Il campo 'Data fine analisi' della prova indica la data di registrazione del risultato nel sistema informatico LIMS.
- Il valore di LQ riportato è corretto per i fattori di scala, quali pesate e diluizioni.
- Nel caso di campionamento effettuato da personale HERAtech Laboratori, esso è accreditato per le seguenti matrici e con i seguenti metodi: Acque destinate al consumo umano APATCNR IRSA 1030 Man 29 2003

Acque di scarico APATCNR IRSA 1030 Man 29 2003

Superfici ambienti del settore alimentare ISO 18593:2018

Rifiuti UNI 10802:2013

Suoli DM 13/09/1999 SO n 185 GU n 248 21/10/1999 Met I.1

- Le prove riportate in questo rapporto di prova contrassegnate, nella colonna note:
- con il simbolo A sono eseguite presso laboratorio Bologna, Via Setta n. 4 40037 Sasso Marconi (BO)
- con il simbolo * non rientrano nell'accreditamento ACCREDIA di questo laboratorio. Le modalità descritte nell'1.09.00 Campionamento non sono oggetto di accreditamento. Per il campione delle emissione i riferimenti all'accreditamento sono individuabili in ogni metodo di prova.
- con il simbolo #* sono eseguite presso laboratorio terzo qualificato e sono da considerarsi non accreditate
- con il simbolo £ sono eseguite presso laboratorio terzo qualificato e sono da considerarsi Accreditate
- con il simbolo \$ sono eseguite/fornite dal cliente e riportate come informazione aggiuntiva. La responsabilità della correttezza del dato e/o dell'idoneo campionamento è completamente a carico del Cliente.
 - (°) indica che la Data inizio analisi è stata ricondotta alla data di accettazione per impossibilità di automatismi.

Per l'espressione del risultato delle prove microbiologiche di conteggio (UFC), si riporta sempre il risultato numerico (come richiesto da normativa) considerando che:

- "O colonie" corrisponde a "colonie non rilevate"
- "3-9 colonie" corrisponde a "stimate" in quanto inferiore al limite di determinazione pari a 10
- "1-2 colonie" corrispondenti a presenti. Inferiori al limite di rilevabilità pari a 3

Pagina 1 di 7

Codice identificazione campione 24080012

LABORATORI

LAB N° 0110 L

RAPPORTO DI PROVA N.24080012

Prova richiesta da: COMUNE DI GIUGLIANO IN CAMPANIA

Corso Campano, 200 80014 Giugliano in Campania

Matrice: ACQUE DESTINATE AL CONSUMO UMANO

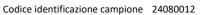
Descrizione del campione: Rubinetto su fuoriterra Via Madonna delle Grazie civ 3

Prelevato il: 14/10/2024

Prelevato da: RTI HYDROLAB STANTE per conto Heratech Laboratori

I.O. di Campionamento: PT06 Rev. in vigore *

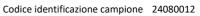
Consegnato il: 15/10/2024


Data inizio analisi campione: 15/10/2024 Data fine analisi campione: 31/10/2024

Riferimenti Normativi: (1) D.Lgs 18/2023

Parametro	Unità di misura	Risultato	Incertezza	Recupero %	Limite Min	Limite Max	Rif. N	Note	
Metodo	Data inizio analisi D					Data fine analisi			
PARAMETRI BIOLOGICI E TOSSICO	LOGICI								
CLOSTRIDIUM PERFRINGENS (SPORE COMPRESE)	UFC/100 mL	0				0	(1)	А	
UNI EN ISO 14189:2016						10/2024	16/10/2024		
ANALISI MICROBIOLOGICHE									
BATTERI COLIFORMI	UFC/100 mL	0				0	(1)	Α	
UNI EN ISO 9308-1:2017					° 15/	10/2024	16/10/2024		
CONTEGGIO DELLE COLONIE A 22°C	UFC/mL	0						Α	
UNI EN ISO 6222:2001					° 15/	10/2024	18/10/2024		
ENTEROCOCCHI INTESTINALI	UFC/100 mL	0				0	(1)	Α	
ISO 7899-2:2000		· · · · · · · · · · · · · · · · · · ·				10/2024	17/10/2	024	
ESCHERICHIA COLI	UFC/100 mL	0				0	(1)	Α	
UNI EN ISO 9308-1:2017	<u> </u>	_			° 15/	10/2024	16/10/2	024	

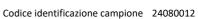
Documento firmato digitalmente ai sensi della normativa vigente da:



LAB N° 0110 L

Pagina 2 di 7

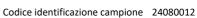
Parametro	Unità di misura	Risultato	Incertezza	Recupero %	Limite Min	Limite Max	Rif. N	No	ote
Metodo	<u> </u>		ı		Data iniz	zio analisi	Data fine an	alisi	
MISURE ESEGUITE SUL CAMPO									
CLORO RESIDUO LIBERO	mg/l	0,15	± 0,05						#*
APAT CNR IRSA 4080 Man 29 2003	mg/L	0,15	± 0,05						#
TORBIDITA`	NTU	0,23	± 0,02			1	(1)		#*
APAT CNR IRSA 2110 Man 29 2003	NIO	0,23	± 0,02				(±)		
PARAMETRI FISICI, CHIMICI E CHIM	ICO EISICI								
COLORE		< 5	1	<u> </u>	l		1	A	Т
APAT CNR IRSA 2020 C Man 29 2003	unità Pt/Co	< 5			° 16.	10/2024	16/10/202		
CONCENTRAZIONE IONI IDROGENO	unità pH a 20°C	7,30	± 0,20		6,5	9,5	(1)	A	Т
APAT CNR IRSA 2060 Man 29 2003	инка рн а 20 С	7,30	± 0,20			710/2024	16/10/202		
CONDUTTIVITA`	μS/cm a 20°C	753	± 75		13/	2500	(1)	+ А	Т
APAT CNR IRSA 2030 Man 29 2003	μ3/011 a 20 C	/55	Ξ/3		° 15.	/10/2024	16/10/202		
DUREZZA TOTALE					13/	10/2024	10/10/202	+	
DUREZZA TOTALE DUREZZA TOTALE	°F	48	± 5					Α	*
UNI EN ISO 15587-2:2002 + UNI EN ISO 17294-2:2023	F	40	Ξ 3	I	° 15.	10/2024	23/10/202		
CALCIO	mg/L	142	± 36		13/	10/2027	23/10/202	+ А	Т
UNI EN ISO 15587-2:2002 + UNI EN ISO 17294-2:2023	mg/ L	142	± 30	<u> </u>	° 15.	10/2024	23/10/202		
MAGNESIO	mg/L	31,8	± 6,4		15/	10/2024	23/10/202	A	T
UNI EN ISO 15587-2:2002 + UNI EN ISO 17294-2:2023	IIIg/ L	31,0	± 0,4		° 15.	10/2024	23/10/202		
ODORE	TASSO DI				15/	10/2024	23/10/202		Т
OBONE	DILUIZIONE	< 1						Α	*
APAT CNR IRSA 2050 Man 29 2003			•	•	° 15,	10/2024	15/10/202	4	-
RESIDUO FISSO A 180°C	mg/L	554	± 28					Α	
APAT CNR IRSA 2090 A Man 29 2003					° 15,	10/2024	26/10/202	4	
SAPORE	-	INSAPORE							# *
APAT CNR IRSA 2080 Man 29 2003					° 15,	10/2024	23/10/202	4	
TIPO DI ODORE	-	ASSENTE						Α	*
APAT CNR IRSA 2050 Man 29 2003					° 15,	10/2024	15/10/202	4	
COSTITUENTI INORGANICI NON ME	TALLICI								
AMMONIO	mg/L	< 0,02				0,5	(1)	Α	
APAT CNR IRSA 4030 A1 Man 29 2003	<u> </u>				° 16,	/10/2024	16/10/202	4	
BROMATO	μg/L	< 2				10	(1)	Α	T
EPA 300.1 1997 part B + EC 1999					° 15,	10/2024	17/10/202	4	
CIANURO	μg/L CN	< 5							£
UNI EN ISO 14403-2:2013	•				° 15,	10/2024	23/10/202	4	
CLORITO	mg/L	< 0,10				0,7	(1)	Α	
EPA 300.1 1997 part B + EC 1999			•	•	° 15,	10/2024	17/10/202	4	
CLORURO	mg/L	11,8	± 2,4			250	(1)	Α	T
EPA 300.1 1997 part A + EC 1999	·				° 15,	10/2024	17/10/202	4	
FLUORURO	mg/L	< 0,10						Α	
EPA 300.1 1997 part A + EC 1999					° 15,	10/2024	17/10/202	4	
NITRATO (COME NO3)	mg/L	3,3	± 0,7			50	(1)	Α	
EPA 300.1 1997 part A + EC 1999					° 15,	10/2024	17/10/202	4	
NITRITO (COME NO2)	mg/L	< 0,02				0,1	(1)	Α	
APAT CNR IRSA 4050 Man 29 2003					° 16,	10/2024	16/10/202	4	
SOLFATO	mg/L	13	± 3			250	(1)	Α	
EPA 300.1 1997 part A + EC 1999					° 15,	10/2024	17/10/202	4	



LAB N° 0110 L

Pagina 3 di 7

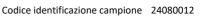
COSTITUENTI ORGANICI							
1,2-DICLOROETANO	μg/L	< 0,1			3	(1)	Α
EPA 5030C 2003 + EPA 8260D 2018				° 15,	/10/2024	31/10/202	24
ANTIPARASSITARI							
ANTIPARASSITARI TOTALI	μg/L	< 0,010			0,5	(1)	Α
EPA 3535A 2007 + EPA 8270E 2018		<u> </u>		15,	/10/2024	21/10/202	24
2,4'-DDD	μg/L	< 0,010					Α
EPA 3535A 2007 + EPA 8270E 2018		•	•	15,	/10/2024	21/10/202	24
2,4'-DDE	μg/L	< 0,010					Α
EPA 3535A 2007 + EPA 8270E 2018		•	•	15,	/10/2024	21/10/202	24
2,4'-DDT	μg/L	< 0,010			0,1	(1)	Α
EPA 3535A 2007 + EPA 8270E 2018		•	•	15,	/10/2024	21/10/202	24
4,4'-DDD	μg/L	< 0,010			0,1	(1)	Α
EPA 3535A 2007 + EPA 8270E 2018		<u>'</u>	•	15,	/10/2024	21/10/202	24
4,4'-DDE	μg/L	< 0,010					Α
EPA 3535A 2007 + EPA 8270E 2018		ı I	I	15,	/10/2024	21/10/202	24
4,4'-DDT	μg/L	< 0,010			0,1	(1)	Α
EPA 3535A 2007 + EPA 8270E 2018	1.0	<u> </u>		15,	/10/2024	21/10/202	24
ALACLOR	μg/L	< 0,010			0,1	(1)	Α
EPA 3535A 2007 + EPA 8270E 2018	F-0/	, -	l	15,	/10/2024	21/10/202	
ALDRIN	μg/L	< 0,010			0,03	(1)	Α
EPA 3535A 2007 + EPA 8270E 2018	F-0/ -	-,	<u> </u>	15.	/10/2024	21/10/202	
alfa-ENDOSULFAN	μg/L	< 0,010		-5,	0,1	(1)	Α
EPA 3535A 2007 + EPA 8270E 2018	MB/ 2	10,010		15.	/10/2024	21/10/202	
alfa-ESACLOROCICLOESANO	μg/L	< 0,010		-5,	0,1	(1)	Α
EPA 3535A 2007 + EPA 8270E 2018	MB/ 2	10,010		15.	/10/2024	21/10/202	
AMETRINA	μg/L	< 0,010		-5,	0,1	(1)	Α
EPA 3535A 2007 + EPA 8270E 2018	μ6/ -	10,010	l l	15.	/10/2024	21/10/202	
ATRAZINA	μg/L	< 0,010		13,	0,1	(1)	A
EPA 3535A 2007 + EPA 8270E 2018	μ6/ L	(0,010		15.	/10/2024	21/10/202	
beta-ENDOSULFAN	μg/L	< 0,010		13)	0,1	(1)	A
EPA 3535A 2007 + EPA 8270E 2018	μg/ L	< 0,010		15	/10/2024	21/10/202	
beta-ESACLOROCICLOESANO	μg/L	< 0,010		13,	0,1	(1)	A
EPA 3535A 2007 + EPA 8270E 2018	μg/ ι	< 0,010		15	/10/2024	21/10/202	
CLORDANO	/1	< 0.010		15,	10/2024	21/10/202	т т
	μg/L	< 0,010		15	/10/2024	21/10/202	Α
EPA 3535A 2007 + EPA 8270E 2018 CLORPIRIFOS	~/1	< 0.010		15,	/10/2024	21/10/202	A
	μg/L	< 0,010		45	0,1 /10/2024	(1) 21/10/202	
EPA 3535A 2007 + EPA 8270E 2018 delta-ESACLOROCICLOESANO	/1	< 0.010	I	15,			т т
	μg/L	< 0,010		45	0,1	(1)	Α
EPA 3535A 2007 + EPA 8270E 2018	/1	< 0.010	Γ	15,	/10/2024	21/10/202	г т
DESETILATRAZINA (DEA)	μg/L	< 0,010			0,1	(1)	Α
EPA 3535A 2007 + EPA 8270E 2018	//	z 0.010	I	15,	/10/2024	21/10/202	т т
DIAZINON	μg/L	< 0,010			0,1	(1)	A
EPA 3535A 2007 + EPA 8270E 2018	,	.0.040	ı	15,	/10/2024	21/10/202	т т
DIELDRIN	μg/L	< 0,010			0,03	(1)	Α
EPA 3535A 2007 + EPA 8270E 2018	 		T	15,	/10/2024	21/10/202	т т
ENDRIN	μg/L	< 0,010			0,1	(1)	Α
EPA 3535A 2007 + EPA 8270E 2018		<u> </u>	1	15,	/10/2024	21/10/202	т т
EPTACLORO	μg/L	< 0,010			0,03	(1)	Α
EPA 3535A 2007 + EPA 8270E 2018				15,	/10/2024	21/10/202	24



Pagina 4 di 7

LAB N° 0110 L

IVALL		NOVA I	.24000012				
μg/L	< 0,010				0,03	(1)	А
				15/3	10/2024	21/10/2	2024
μg/L	< 0,010				0,1	(1)	Α
		-		15/2	10/2024	21/10/2	2024
μg/L	< 0,010						Α
	•	•		15/3	10/2024	21/10/2	2024
μg/L	< 0,010						Α
•	•	•	•	15/3	10/2024	21/10/2	2024
μg/L	< 0,010				0,1	(1)	Α
•	•	•	•	15/3	10/2024	21/10/2	2024
μg/L	< 0,010				0,1	(1)	Α
•	•	•	•	15/3	10/2024	21/10/2	2024
μg/L	< 0,010				0,1	(1)	Α
	<u></u>		<u> </u>	15/3	10/2024	21/10/2	2024
μg/L	< 0,010				0,1	(1)	Α
	•	<u> </u>	•	15/3	10/2024	21/10/2	2024
μg/L	< 0,010				0,1	(1)	Α
	•	•		15/3		21/10/2	2024
μg/L	< 0,010				0,1	(1)	Α
1 0	· · · · · · · · · · · · · · · · · · ·			15/3	10/2024	21/10/2	2024
ug/L	< 0.010			İ	0.1	(1)	Α
1-0	-,-			15/3		` '	2024
ug/L	< 0.010			İ	-	1	Α
P-O	-,-			15/3		` '	2024
ug/L	< 0.010					, -,	Α
1-0/	-,-		1	15/3	10/2024	21/10/2	2024
ug/L	< 0.010			İ			Α
1-0/	-,-		1	15/3	10/2024	21/10/2	2024
ug/L	< 0.010				-	.	Α
1-0/	-,-		1	15/3			2024
ug/L	< 0.010				-		Α
P6/ -	10,020		1	15/	· · · · · · · · · · · · · · · · · · ·	` '	
ug/l	< 0.010			10/	-	.	A
P6/ -	10,010	1	<u> </u>	15/	· · · · · · · · · · · · · · · · · · ·		
μσ/I	< 0.010	I		15/.	-		A
P6/ -	10,010	1	<u> </u>	15/		` '	
ug/l	< 0.010			10/			A
P6/ -	10,010	1	<u> </u>	15/		` '	
ug/l	< 0.010			15/.	-	.	A
MÐ/ □	- 5,010	1	1	15/	•		
110/1	< 0.010			13/.	-	1	A A
⊬6/ L	` 0,010	1	1	15/	· · · · · · · · · · · · · · · · · · ·	` '	
110/1	< 0.010			13/.		1	A A
μ <u>β</u> / L	\ 0,010	1	1	15/	· · · · · · · · · · · · · · · · · · ·	` '	
110/1	< 0.010			13/.		.	A A
μg/ L	\ 0,010	i	1	15 /		21/10/2	
	1		1	12/.	10/2024	(1)	A A
/!	∠ ∩ 1						
μg/L	< 0,1	<u> </u>		15 /			
μg/L mg/L	< 0,1	± 0,1	•	15/2	10/2024	31/10/2	
	µg/L µg/L µg/L µg/L µg/L µg/L	руд (0,010) руд (0,010)	руд. 100	руд. < 0,010	µg/L	µg/L < 0,010	µg/L < 0,010



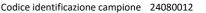
LAB N° 0110 L

Pagina 5 di 7

OMPOSTI ORGANOALOGENATI 1,1,1-TRICLOROETANO			1	 	<u> </u>
(METILCLOROFORMIO)	μg/L	< 0,1			А
APAT CNR IRSA 5150 p.to 1.1 Man 29 2003		Į.	l l	° 15/10/2024	16/10/2024
BROMODICLOROMETANO	μg/L	0,2	± 0,1	13/10/2024	A
APAT CNR IRSA 5150 p.to 1.1 Man 29 2003	M6/ L	0,2	10,1	° 15/10/2024	16/10/2024
BROMOFORMIO	μg/L	1,4	± 0,6	13/10/2024	A
APAT CNR IRSA 5150 p.to 1.1 Man 29 2003	μ <u>8</u> / L	1,4	± 0,0	° 15/10/2024	16/10/2024
DIBROMOCLOROMETANO	μg/L	0,6	± 0,2	13/10/2024	A A
APAT CNR IRSA 5150 p.to 1.1 Man 29 2003	μ <u>8</u> / μ	0,0	± 0,2	° 15/10/2024	16/10/2024
TETRACLOROETILENE	μg/L	< 0,1		13/10/2024	10/10/2024 A
APAT CNR IRSA 5150 p.to 1.1 Man 29 2003	μg/ L	< 0,1		° 15/10/2024	16/10/2024
TETRACLOROETILENE + TRICLOROETILENE	ua/I	< 0,1		10	(1) A
APAT CNR IRSA 5150 p.to 1.1 Man 29 2003	μg/L	< 0,1		° 15/10/2024	16/10/2024
TETRACLORURO DI CARBONIO	/1	. 0.1		13/10/2024	
L	μg/L	< 0,1	1 1	° 15/10/2024	16/10/2024
APAT CNR IRSA 5150 p.to 1.1 Man 29 2003 TRIALOMETANI-TOTALE	a/I	2.2	+00	13/10/2024	
	μg/L	2,2	± 0,9	° 15/10/2024	(1) A 16/10/2024
APAT CNR IRSA 5150 p.to 1.1 Man 29 2003 TRICLOROETILENE	1.00/1	-01	 	15/10/2024	
	μg/L	< 0,1		° 15/10/2024	16/10/2024
APAT CNR IRSA 5150 p.to 1.1 Man 29 2003 TRICLOROMETANO (CLOROFORMIO)	/1	101	 	° 15/10/2024	16/10/2024
` ' L	μg/L	< 0,1		° 15/10/2024	A 15/10/2024
APAT CNR IRSA 5150 p.to 1.1 Man 29 2003	- /1	1 22	1 .00	° 15/10/2024	16/10/2024
COMPOSTI ORGANOALOGENATI	μg/L	2,2	± 0,9	° 15/10/2024	A
APAT CNR IRSA 5150 p.to 1.1 Man 29 2003				° 15/10/2024	16/10/2024
METALLI E SPECIE METALLICHE			,		
ALLUMINIO	μg/L	< 10		200	(1) A
UNI EN ISO 15587-2:2002 + UNI EN ISO 17294-2:2023			<u>, </u>	° 15/10/2024	23/10/2024
ANTIMONIO	μg/L	< 0,5		10	(1) A
UNI EN ISO 15587-2:2002 + UNI EN ISO 17294-2:2023				° 15/10/2024	23/10/2024
ARSENICO	μg/L	2	± 1	10	(1) A
UNI EN ISO 15587-2:2002 + UNI EN ISO 17294-2:2023				° 15/10/2024	23/10/2024
BORO	mg/L	0,081	± 0,024	1,5	(1) A
UNI EN ISO 15587-2:2002 + UNI EN ISO 17294-2:2023				° 15/10/2024	23/10/2024
CADMIO	μg/L	< 0,5		5	(1) A
JNI EN ISO 15587-2:2002 + UNI EN ISO 17294-2:2023				° 15/10/2024	23/10/2024
CROMO	μg/L	3	± 1	50	(1) A
UNI EN ISO 15587-2:2002 + UNI EN ISO 17294-2:2023				° 15/10/2024	23/10/2024
FERRO	μg/L	10	± 3	200	(1) A
UNI EN ISO 15587-2:2002 + UNI EN ISO 17294-2:2023				° 15/10/2024	23/10/2024
MANGANESE	μg/L	< 5		50	(1) A
UNI EN ISO 15587-2:2002 + UNI EN ISO 17294-2:2023				° 15/10/2024	23/10/2024
MERCURIO	μg/L	< 0,1		1	(1) A
JNI EN ISO 15587-2:2002 + UNI EN ISO 17294-2:2023			•	° 15/10/2024	23/10/2024
NICHEL	μg/L	3	± 1	20	(1) A
JNI EN ISO 15587-2:2002 + UNI EN ISO 17294-2:2023		•	•	° 15/10/2024	23/10/2024
PIOMBO	μg/L	< 1		10	(1) A
UNI EN ISO 15587-2:2002 + UNI EN ISO 17294-2:2023		1	<u> </u>	° 15/10/2024	23/10/2024
RAME	mg/L	0,006	± 0,001	2	(1) A
	٠,				, ,

Pagina 6 di 7

LAB N° 0110 L


RAPPORTO DI PROVA N.24080012

SELENIO	μg/L	< 1			20	(1)	Α	
UNI EN ISO 15587-2:2002 + UNI EN ISO 17294-2:2023				° 15	/10/2024	23/10/2	2024	
SODIO	mg/L	9	± 1		200	(1)	Α	*
UNI EN ISO 15587-2:2002 + UNI EN ISO 17294-2:2023				° 15	/10/2024	23/10/2	2024	
VANADIO	μg/L	3	± 1		140	(1)	Α	
UNI EN ISO 15587-2:2002 + UNI EN ISO 17294-2:2023				° 15	/10/2024	23/10/2	2024	
COMPOSTI ORGANICI								
IDROCARBURI POLICICLICI AROMATICI (IPA)								
BENZO(b)FLUORANTENE	μg/L	< 0,005					Α	
EPA 3535A 2007 + EPA 8270E 2018				15/10/2024 21/			1/10/2024	
BENZO(k)FLUORANTENE	μg/L	< 0,005					Α	
EPA 3535A 2007 + EPA 8270E 2018				15	/10/2024	21/10/2	2024	
BENZO(g,h,i)PERILENE	μg/L	< 0,005					Α	
EPA 3535A 2007 + EPA 8270E 2018				15	/10/2024	21/10/2	2024	
INDENO(1,2,3-c,d)PIRENE	μg/L	< 0,005					Α	
EPA 3535A 2007 + EPA 8270E 2018				15	/10/2024	21/10/2	2024	
IDROCARBURI POLICICLICI AROMATICI (IPA)	μg/L	< 0,005					Α	
EPA 3535A 2007 + EPA 8270E 2018				15	/10/2024	21/10/2	2024	
BENZO(a)PIRENE	μg/L	< 0,002			0,01	(1)	Α	
EPA 3535A 2007 + EPA 8270E 2018				 15	/10/2024	21/10/2	2024	

Documento firmato digitalmente ai sensi della normativa vigente da:

dott. Paolo Morelli Responsabile Settore Acque Ordine Interprovinciale dei Chimici dell'Emilia Romagna Iscrizione n° A 1555

Documento firmato digitalmente ai sensi della normativa vigente da:

LAB N° 0110 L

Pagina 7 di 7

RAPPORTO DI PROVA N.24080012

NOTE:

- Il presente rapporto di prova si riferisce esclusivamente ai campioni sottoposti a prova. Il laboratorio non è responsabile dell'identificazione del campione e della data di prelievo se non ne ha effettuato il campionamento e la consegna: i risultati si riferiscono al campione così come ricevuto.
- Il presente rapporto di prova non può essere riprodotto parzialmente senza autorizzazione scritta del laboratorio.
- Documento con firma digitale avanzata ai sensi della normativa vigente.
- I metodi di prova relativi al presente documento sono disponibili per la consultazione a richiesta del cliente.
- I dettagli relativi al campionamento sono registrati sul foglio di prelievo disponibile presso il laboratorio.
- Per le prove chimiche e radiochimiche l'incertezza estesa è calcolata in accordo con il documento ACCREDIA DT-0002 Rev. 1 2000; per tutte le prove si utilizza il fattore di copertura K = 2 ed una probabilità p = 0,95.
- Per le prove microbiologiche l'incertezza è calcolata come intervallo di confidenza al 95%.
- Ai fini del calcolo dell'incertezza della sommatoria di più prove, l'incertezza di una prova con valore <LQ è considerata nulla.
- Il fattore di recupero è riportato nel rapporto di prova quando è espressamente richiesto da Cliente. Ove non espressamente indicato, il recupero non è stato utilizzato nei calcoli.
- Nel caso di metodi che prevedono fasi di estrazione/purificazione, ove non espressamente indicato, il valore di recupero è da intendersi compreso all'intervallo dei limiti di accettabilità specifici.
- Per la prova Sommatoria il criterio utilizzato è Lower Bound ovvero i composti < LQ sono considerati pari a 0 e il limite di quantificazione è pari al maggiore dei LQ dei singoli parametri costituenti la Sommatoria stessa.
- La Revisione del Rapporto di Prova sostituisce e annulla il documento precedente.
- Per il campionamento eseguito da Heratech il numero del Verbale di Campionamento corrisponde al codice di identificazione campione (ID), diversamente sarà indicato il riferimento al verbale nel campo 'NOTE SUL CAMPIONE'.
- Il campo 'Data fine analisi' della prova indica la data di registrazione del risultato nel sistema informatico LIMS.
- Il valore di LQ riportato è corretto per i fattori di scala, quali pesate e diluizioni.
- Nel caso di campionamento effettuato da personale HERAtech Laboratori, esso è accreditato per le seguenti matrici e con i seguenti metodi: Acque destinate al consumo umano APATCNR IRSA 1030 Man 29 2003

Acque di scarico APATCNR IRSA 1030 Man 29 2003

Superfici ambienti del settore alimentare ISO 18593:2018


Rifiuti UNI 10802:2013

Suoli DM 13/09/1999 SO n 185 GU n 248 21/10/1999 Met I.1

- Le prove riportate in questo rapporto di prova contrassegnate, nella colonna note:
- con il simbolo A sono eseguite presso laboratorio Bologna, Via Setta n. 4 40037 Sasso Marconi (BO)
- con il simbolo * non rientrano nell'accreditamento ACCREDIA di questo laboratorio. Le modalità descritte nell'1.09.00 Campionamento non sono oggetto di accreditamento. Per il campione delle emissione i riferimenti all'accreditamento sono individuabili in ogni metodo di prova.
- con il simbolo #* sono eseguite presso laboratorio terzo qualificato e sono da considerarsi non accreditate
- con il simbolo £ sono eseguite presso laboratorio terzo qualificato e sono da considerarsi Accreditate
- con il simbolo \$ sono eseguite/fornite dal cliente e riportate come informazione aggiuntiva. La responsabilità della correttezza del dato e/o dell'idoneo campionamento è completamente a carico del Cliente.
 - (°) indica che la Data inizio analisi è stata ricondotta alla data di accettazione per impossibilità di automatismi.

Per l'espressione del risultato delle prove microbiologiche di conteggio (UFC), si riporta sempre il risultato numerico (come richiesto da normativa) considerando che:

- "O colonie" corrisponde a "colonie non rilevate"
- "3-9 colonie" corrisponde a "stimate" in quanto inferiore al limite di determinazione pari a 10
- "1-2 colonie" corrispondenti a presenti. Inferiori al limite di rilevabilità pari a 3

LABORATORI

LAB N° 0110 L

RAPPORTO DI PROVA N.24080013

Prova richiesta da: COMUNE DI GIUGLIANO IN CAMPANIA

Corso Campano, 200 80014 Giugliano in Campania

Matrice: ACQUE DESTINATE AL CONSUMO UMANO

Descrizione del campione: Rubinetto su fuoriterra Via Madonna delle Grazie civ 3

Prelevato il: 14/10/2024

Prelevato da: RTI HYDROLAB STANTE per conto Heratech Laboratori

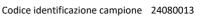
I.O. di Campionamento: PT06 Rev. in vigore *

Consegnato il: 15/10/2024

Data inizio analisi campione: 15/10/2024 Data fine analisi campione: 13/11/2024

Riferimenti Normativi: (1) D.Lgs 28 2016

Parametro	Unità di misura	Risultato	Incertezza	Recupero %	Limite Min	Limite Max	Rif. N	No	ote
Metodo					Data iniz	zio analisi	Data fine ar	nalisi	
MISURE ESEGUITE SUL CAMPO									
DATA E ORA CAMPIONAMENTO (PROVE RADIOCHIMICHE)	-	14/10/2024 - ore 10:28							*
-									
PARAMETRI FISICI, CHIMICI E CHIMI	CO-FISICI								
NALISI RADIOCHIMICHE									
OOSE TOTALE INDICATIVA									
DOSE TOTALE INDICATIVA (DA ATTIVITÀ α TOTALE E β TOTALE)	mSv	< 0,1				0,1	(1)	Α	
Dlgs 28/2016, Allegato III p.to 1 a)					° 15,	/10/2024	13/11/202	24	
CONCENTRAZIONE DI ATTIVITA` DI ALFA TOTALE	Becquerel/L	0,02						А	
UNI EN ISO 11704:2019					° 15,	/10/2024	13/11/202	24	
INCERTEZZA ESTESA ALFA TOTALE	Becquerel/L	0,02						Α	
UNI EN ISO 11704:2019					° 15,	/10/2024	13/11/202	24	
MINIMA ATTIVITA' RILEVABILE ALFA TOT (MAR)	Becquerel/L	0,03						Α	
UNI EN ISO 11704:2019					° 15,	/10/2024	13/11/202	24	
CONCENTRAZIONE DI ATTIVITA` DI BETA TOTALE	Becquerel/L	<0,2						Α	
UNI EN ISO 11704:2019					° 15,	/10/2024	13/11/202	24	
INCERTEZZA ESTESA BETA TOTALE	Becquerel/L	-						Α	
UNI EN ISO 11704:2019	_				° 15,	/10/2024	13/11/202	24	
MINIMA ATTIVITA' RILEVABILE BETA TOT (MAR)	Becquerel/L	0,2						Α	
UNI EN ISO 11704:2019					° 15,	/10/2024	13/11/202	24	
ADON									
CONCENTRAZIONE DI ATTIVITA` DI RADON	Becquerel/L	3				100	(1)	Α	
ISO 13164-4:2023					° 15,	/10/2024	29/10/202	24	
INCERTEZZA ESTESA RADON	Becquerel/L	1,3						Α	
ISO 13164-4:2023				•	° 15,	/10/2024	29/10/202	24	_
MINIMA ATTIVITA` RILEVABILE RADON (MAR)	Becquerel/L	1						Α	
ISO 13164-4:2023					° 15,	/10/2024	29/10/202	24	
DATA E ORA INIZIO ANALISI (RADON)	-	15/10/24 12:33						Α	*


C.F. / Reg. Imp. 03578271201 - Gruppo Iva "Gruppo Hera" P. IVA 03819031208

Cap. Soc. i.v. € 2.000.000,00 - Società soggetta alla direzione e al coordinamento di Hera S.p.A.

Pagina 1 di 3

Pagina 2 di 3

LABORATORI

LAB N° 0110 L

RAPPORTO DI PROVA N.24080013

TRIZIO								
CONCENTRAZIONE DI ATTIVITA` DI TRIZIO	Becquerel/L	<10			100	(1)	Α	
UNI EN ISO 9698:2019				° 15,	/10/2024	28/10/202	24	
INCERTEZZA ESTESA TRIZIO	Becquerel/L	-					Α	
UNI EN ISO 9698:2019				° 15,	/10/2024	28/10/202	24	
MINIMA ATTIVITA` RILEVABILE TRIZIO (MAR)	Becquerel/L	10					А	
UNI EN ISO 9698:2019				° 15,	/10/2024	28/10/202	24	

Documento firmato digitalmente ai sensi della normativa vigente da:

dott. Paolo Morelli Responsabile Settore Acque Ordine Interprovinciale dei Chimici dell'Emilia Romagna Iscrizione n° A 1555

Documento firmato digitalmente ai sensi della normativa vigente da:

LABORATORI

LAB N° 0110 L

Pagina 3 di 3

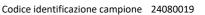
RAPPORTO DI PROVA N.24080013

NOTE:

- Il presente rapporto di prova si riferisce esclusivamente ai campioni sottoposti a prova. Il laboratorio non è responsabile dell'identificazione del campione e della data di prelievo se non ne ha effettuato il campionamento e la consegna: i risultati si riferiscono al campione così come ricevuto.
- Il presente rapporto di prova non può essere riprodotto parzialmente senza autorizzazione scritta del laboratorio.
- Documento con firma digitale avanzata ai sensi della normativa vigente.
- I metodi di prova relativi al presente documento sono disponibili per la consultazione a richiesta del cliente.
- I dettagli relativi al campionamento sono registrati sul foglio di prelievo disponibile presso il laboratorio.
- Per le prove chimiche e radiochimiche l'incertezza estesa è calcolata in accordo con il documento ACCREDIA DT-0002 Rev. 1 2000; per tutte le prove si utilizza il fattore di copertura K = 2 ed una probabilità p = 0,95.
- Per le prove microbiologiche l'incertezza è calcolata come intervallo di confidenza al 95%.
- Ai fini del calcolo dell'incertezza della sommatoria di più prove, l'incertezza di una prova con valore <LQ è considerata nulla.
- Il fattore di recupero è riportato nel rapporto di prova quando è espressamente richiesto da Cliente. Ove non espressamente indicato, il recupero non è stato utilizzato nei calcoli.
- Nel caso di metodi che prevedono fasi di estrazione/purificazione, ove non espressamente indicato, il valore di recupero è da intendersi compreso all'intervallo dei limiti di accettabilità specifici.
- Per la prova Sommatoria il criterio utilizzato è Lower Bound ovvero i composti < LQ sono considerati pari a 0 e il limite di quantificazione è pari al maggiore dei LQ dei singoli parametri costituenti la Sommatoria stessa.
- La Revisione del Rapporto di Prova sostituisce e annulla il documento precedente.
- Per il campionamento eseguito da Heratech il numero del Verbale di Campionamento corrisponde al codice di identificazione campione (ID), diversamente sarà indicato il riferimento al verbale nel campo 'NOTE SUL CAMPIONE'.
- Il campo 'Data fine analisi' della prova indica la data di registrazione del risultato nel sistema informatico LIMS.
- Il valore di LQ riportato è corretto per i fattori di scala, quali pesate e diluizioni.
- Nel caso di campionamento effettuato da personale HERAtech Laboratori, esso è accreditato per le seguenti matrici e con i seguenti metodi: Acque destinate al consumo umano APATCNR IRSA 1030 Man 29 2003

Acque di scarico APATCNR IRSA 1030 Man 29 2003

Superfici ambienti del settore alimentare ISO 18593:2018


Rifiuti UNI 10802:2013

Suoli DM 13/09/1999 SO n 185 GU n 248 21/10/1999 Met I.1

- Le prove riportate in questo rapporto di prova contrassegnate, nella colonna note:
- con il simbolo A sono eseguite presso laboratorio Bologna, Via Setta n. 4 40037 Sasso Marconi (BO)
- con il simbolo * non rientrano nell'accreditamento ACCREDIA di questo laboratorio. Le modalità descritte nell'1.09.00 Campionamento non sono oggetto di accreditamento. Per il campione delle emissione i riferimenti all'accreditamento sono individuabili in ogni metodo di prova.
- con il simbolo #* sono eseguite presso laboratorio terzo qualificato e sono da considerarsi non accreditate
- con il simbolo £ sono eseguite presso laboratorio terzo qualificato e sono da considerarsi Accreditate
- con il simbolo \$ sono eseguite/fornite dal cliente e riportate come informazione aggiuntiva. La responsabilità della correttezza del dato e/o dell'idoneo campionamento è completamente a carico del Cliente.
 - (°) indica che la Data inizio analisi è stata ricondotta alla data di accettazione per impossibilità di automatismi.

Per il metodo EN ISO 11704:2019, la taratura viene eseguita utilizzando i radionuclidi 241Am per gli alfa- emettitori e 90Sr/90Yper i beta emettitori.

LAB N° 0110 L

Pagina 1 di 3

RAPPORTO DI PROVA N.24080019

Prova richiesta da: COMUNE DI GIUGLIANO IN CAMPANIA

Corso Campano, 200 80014 Giugliano in Campania

Matrice: ACQUE DESTINATE AL CONSUMO UMANO

Descrizione del campione: Rubinetto su Fuoriterrra via Arco Sant'Antonio (angolo via Pagliaio del Monaco)

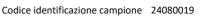
Prelevato il: 14/10/2024

Prelevato da: RTI HYDROLAB STANTE per conto Heratech Laboratori

I.O. di Campionamento: PT06 Rev. in vigore *

Consegnato il: 15/10/2024

Data inizio analisi campione: 15/10/2024 Data fine analisi campione: 23/10/2024

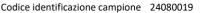

Riferimenti Normativi: (1) D.Lgs 18/2023

Parametro	Unità di misura	Risultato	Incertezza	Recupero %	Limite Min	Limite Max	Rif. N	Note
Metodo					Data iniz	zio analisi	Data fine analisi	
PARAMETRI BIOLOGICI E TOSSICO	LOGICI							
CLOSTRIDIUM PERFRINGENS (SPORE COMPRESE)	UFC/100 mL	0				0	(1)	А
UNI EN ISO 14189:2016							16/10/2024	
ANALISI MICROBIOLOGICHE								
BATTERI COLIFORMI	UFC/100 mL	0				0	(1)	Α
UNI EN ISO 9308-1:2017					° 15,	/10/2024	16/10/20	024
CONTEGGIO DELLE COLONIE A 22°C	UFC/mL	0						Α
UNI EN ISO 6222:2001							18/10/20	024
ESCHERICHIA COLI	UFC/100 mL	0				0	(1)	Α
UNI EN ISO 9308-1:2017		•	•	•	° 15,	/10/2024	16/10/20	024

Documento firmato digitalmente ai sensi della normativa vigente da:

Pagina 2 di 3

LABORATORI


RAPPORTO DI PROVA N.24080019

Parametro	Unità di misura	Risultato	Incertezza	Recupero %	Limite Min	Limite Max	Rif. N	No	ote
Metodo					Data iniz	zio analisi	Data fine a	nalisi	
MISURE ESEGUITE SUL CAMPO									
CLORO RESIDUO LIBERO	mg/L	0,17	± 0,05						# *
APAT CNR IRSA 4080 Man 29 2003	-								
TORBIDITA`	NTU	0,37	± 0,04			1	(1)		#*
APAT CNR IRSA 2110 Man 29 2003	-								
PARAMETRI FISICI, CHIMICI E CHI	IMICO-FISICI								
COLORE	unità Pt/Co	< 5						Α	
APAT CNR IRSA 2020 C Man 29 2003					° 16,	/10/2024	16/10/2024		
CONCENTRAZIONE IONI IDROGENO	unità pH a 20°C	7,28	± 0,20		6,5	9,5	(1)	Α	
APAT CNR IRSA 2060 Man 29 2003					° 15,	/10/2024	16/10/20	024	
CONDUTTIVITA`	μS/cm a 20°C	770	± 77			2500	(1)	Α	
APAT CNR IRSA 2030 Man 29 2003	•				° 15,	/10/2024	16/10/2024		
ODORE	TASSO DI DILUIZIONE	< 1						Α	*
APAT CNR IRSA 2050 Man 29 2003					° 15,	/10/2024	15/10/20	024	
SAPORE	-	INSAPORE							#*
APAT CNR IRSA 2080 Man 29 2003					° 15,	/10/2024	23/10/20	024	
TIPO DI ODORE	-	ASSENTE						Α	*
APAT CNR IRSA 2050 Man 29 2003		° 15,	/10/2024	15/10/20	024				
METALLI E SPECIE METALLICHE									
FERRO	μg/L	< 10				200	(1)	Α	T
UNI EN ISO 15587-2:2002 + UNI EN ISO 17294-2:20			-	-	° 15,	/10/2024	23/10/20)24	

Documento firmato digitalmente ai sensi della normativa vigente da:

dott. Paolo Morelli Responsabile Settore Acque Ordine Interprovinciale dei Chimici dell'Emilia Romagna Iscrizione n° A 1555

Documento firmato digitalmente ai sensi della normativa vigente da:

LAB N° 0110 L

Pagina 3 di 3

RAPPORTO DI PROVA N.24080019

NOTE:

- Il presente rapporto di prova si riferisce esclusivamente ai campioni sottoposti a prova. Il laboratorio non è responsabile dell'identificazione del campione e della data di prelievo se non ne ha effettuato il campionamento e la consegna: i risultati si riferiscono al campione così come ricevuto.
- Il presente rapporto di prova non può essere riprodotto parzialmente senza autorizzazione scritta del laboratorio.
- Documento con firma digitale avanzata ai sensi della normativa vigente.
- I metodi di prova relativi al presente documento sono disponibili per la consultazione a richiesta del cliente.
- I dettagli relativi al campionamento sono registrati sul foglio di prelievo disponibile presso il laboratorio.
- Per le prove chimiche e radiochimiche l'incertezza estesa è calcolata in accordo con il documento ACCREDIA DT-0002 Rev. 1 2000; per tutte le prove si utilizza il fattore di copertura K = 2 ed una probabilità p = 0,95.
- Per le prove microbiologiche l'incertezza è calcolata come intervallo di confidenza al 95%.
- Ai fini del calcolo dell'incertezza della sommatoria di più prove, l'incertezza di una prova con valore <LQ è considerata nulla.
- Il fattore di recupero è riportato nel rapporto di prova quando è espressamente richiesto da Cliente. Ove non espressamente indicato, il recupero non è stato utilizzato nei calcoli.
- Nel caso di metodi che prevedono fasi di estrazione/purificazione, ove non espressamente indicato, il valore di recupero è da intendersi compreso all'intervallo dei limiti di accettabilità specifici.
- Per la prova Sommatoria il criterio utilizzato è Lower Bound ovvero i composti < LQ sono considerati pari a 0 e il limite di quantificazione è pari al maggiore dei LQ dei singoli parametri costituenti la Sommatoria stessa.
- La Revisione del Rapporto di Prova sostituisce e annulla il documento precedente.
- Per il campionamento eseguito da Heratech il numero del Verbale di Campionamento corrisponde al codice di identificazione campione (ID), diversamente sarà indicato il riferimento al verbale nel campo 'NOTE SUL CAMPIONE'.
- Il campo 'Data fine analisi' della prova indica la data di registrazione del risultato nel sistema informatico LIMS.
- Il valore di LQ riportato è corretto per i fattori di scala, quali pesate e diluizioni.
- Nel caso di campionamento effettuato da personale HERAtech Laboratori, esso è accreditato per le seguenti matrici e con i seguenti metodi: Acque destinate al consumo umano APATCNR IRSA 1030 Man 29 2003

Acque di scarico APATCNR IRSA 1030 Man 29 2003

Superfici ambienti del settore alimentare ISO 18593:2018

Rifiuti UNI 10802:2013

Suoli DM 13/09/1999 SO n 185 GU n 248 21/10/1999 Met I.1

- Le prove riportate in questo rapporto di prova contrassegnate, nella colonna note:
- con il simbolo A sono eseguite presso laboratorio Bologna, Via Setta n. 4 40037 Sasso Marconi (BO)
- con il simbolo * non rientrano nell'accreditamento ACCREDIA di questo laboratorio. Le modalità descritte nell'1.09.00 Campionamento non sono oggetto di accreditamento. Per il campione delle emissione i riferimenti all'accreditamento sono individuabili in ogni metodo di prova.
- con il simbolo #* sono eseguite presso laboratorio terzo qualificato e sono da considerarsi non accreditate
- con il simbolo £ sono eseguite presso laboratorio terzo qualificato e sono da considerarsi Accreditate
- con il simbolo \$ sono eseguite/fornite dal cliente e riportate come informazione aggiuntiva. La responsabilità della correttezza del dato e/o dell'idoneo campionamento è completamente a carico del Cliente.
 - (°) indica che la Data inizio analisi è stata ricondotta alla data di accettazione per impossibilità di automatismi.

Per l'espressione del risultato delle prove microbiologiche di conteggio (UFC), si riporta sempre il risultato numerico (come richiesto da normativa) considerando che:

- "O colonie" corrisponde a "colonie non rilevate"
- "3-9 colonie" corrisponde a "stimate" in quanto inferiore al limite di determinazione pari a 10
- "1-2 colonie" corrispondenti a presenti. Inferiori al limite di rilevabilità pari a 3

LABORATORI

Pagina 1 di 3

LAB N° 0110 L

RAPPORTO DI PROVA N.24080010

Prova richiesta da: COMUNE DI GIUGLIANO IN CAMPANIA

Corso Campano, 200 80014 Giugliano in Campania

Matrice: ACQUE DESTINATE AL CONSUMO UMANO

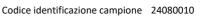
Descrizione del campione: Fontanina al Corso Campano adiacente chiesa "San Nicola"

Prelevato il: 14/10/2024

Prelevato da: RTI HYDROLAB STANTE per conto Heratech Laboratori

I.O. di Campionamento: PT06 Rev. in vigore *

Consegnato il: 15/10/2024


Data inizio analisi campione: 15/10/2024 Data fine analisi campione: 23/10/2024

Riferimenti Normativi: (1) D.Lgs 18/2023

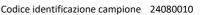
Parametro	Unità di misura	Risultato	Incertezza	Recupero %	Limite Min	Limite Max	Rif. N	Note
Metodo				Data iniz	zio analisi	Data fine analisi		
PARAMETRI BIOLOGICI E TOSSICO	LOGICI							
CLOSTRIDIUM PERFRINGENS (SPORE COMPRESE)	UFC/100 mL	0				0	(1)	А
UNI EN ISO 14189:2016		° 15,	/10/2024	16/10/2024				
ANALISI MICROBIOLOGICHE								
BATTERI COLIFORMI	UFC/100 mL	0				0	(1)	Α
UNI EN ISO 9308-1:2017					° 15,	/10/2024	16/10/20	024
CONTEGGIO DELLE COLONIE A 22°C	UFC/mL	0						Α
UNI EN ISO 6222:2001					° 15,	/10/2024	18/10/20	024
ESCHERICHIA COLI	UFC/100 mL	0				0	(1)	Α
UNI EN ISO 9308-1:2017		<u> </u>				/10/2024	16/10/20	024

Documento firmato digitalmente ai sensi della normativa vigente da:

LAB N° 0110 L

Pagina 2 di 3

RAPPORTO DI PROVA N.24080010


Parametro	Unità di misura	Risultato	Incertezza	Recupero %	Limite Min	Limite Max	Rif. N	No	ote
Metodo					Data iniz	zio analisi	Data fine a	analisi	
MISURE ESEGUITE SUL CAMPO									
CLORO RESIDUO LIBERO	mg/L	0,15	± 0,05						#*
APAT CNR IRSA 4080 Man 29 2003									
TORBIDITA`	NTU	0,37	± 0,04			1	(1)		# *
APAT CNR IRSA 2110 Man 29 2003									
PARAMETRI FISICI, CHIMICI E CHI	MICO-FISICI								
COLORE	unità Pt/Co	< 5						Α	
APAT CNR IRSA 2020 C Man 29 2003					° 16,	/10/2024	16/10/2024		
CONCENTRAZIONE IONI IDROGENO	unità pH a 20°C	7,28	± 0,20		6,5	9,5	(1)	Α	
APAT CNR IRSA 2060 Man 29 2003						/10/2024	16/10/2	024	
CONDUTTIVITA`	μS/cm a 20°C	747	± 75			2500	(1)	Α	
APAT CNR IRSA 2030 Man 29 2003					° 15,	/10/2024	16/10/2024		
ODORE	TASSO DI DILUIZIONE	< 1						А	*
APAT CNR IRSA 2050 Man 29 2003					° 15,	/10/2024	15/10/20	024	
SAPORE	-	INSAPORE							# *
APAT CNR IRSA 2080 Man 29 2003					° 15,	/10/2024	23/10/20	024	
TIPO DI ODORE	-	ASSENTE						Α	*
APAT CNR IRSA 2050 Man 29 2003					° 15,	/10/2024	15/10/20	024	
METALLI E SPECIE METALLICHE									
FERRO	μg/L	< 10				200	(1)	Α	
UNI EN ISO 15587-2:2002 + UNI EN ISO 17294-2:202	3		-	-	° 15,	/10/2024	23/10/20	024	

Documento firmato digitalmente ai sensi della normativa vigente da:

dott. Paolo Morelli Responsabile Settore Acque Ordine Interprovinciale dei Chimici dell'Emilia Romagna Iscrizione n° A 1555

Documento firmato digitalmente ai sensi della normativa vigente da:

LAB N° 0110 L

Pagina 3 di 3

RAPPORTO DI PROVA N.24080010

NOTE:

- Il presente rapporto di prova si riferisce esclusivamente ai campioni sottoposti a prova. Il laboratorio non è responsabile dell'identificazione del campione e della data di prelievo se non ne ha effettuato il campionamento e la consegna: i risultati si riferiscono al campione così come ricevuto.
- Il presente rapporto di prova non può essere riprodotto parzialmente senza autorizzazione scritta del laboratorio.
- Documento con firma digitale avanzata ai sensi della normativa vigente.
- I metodi di prova relativi al presente documento sono disponibili per la consultazione a richiesta del cliente.
- I dettagli relativi al campionamento sono registrati sul foglio di prelievo disponibile presso il laboratorio.
- Per le prove chimiche e radiochimiche l'incertezza estesa è calcolata in accordo con il documento ACCREDIA DT-0002 Rev. 1 2000; per tutte le prove si utilizza il fattore di copertura K = 2 ed una probabilità p = 0,95.
- Per le prove microbiologiche l'incertezza è calcolata come intervallo di confidenza al 95%.
- Ai fini del calcolo dell'incertezza della sommatoria di più prove, l'incertezza di una prova con valore <LQ è considerata nulla.
- Il fattore di recupero è riportato nel rapporto di prova quando è espressamente richiesto da Cliente. Ove non espressamente indicato, il recupero non è stato utilizzato nei calcoli.
- Nel caso di metodi che prevedono fasi di estrazione/purificazione, ove non espressamente indicato, il valore di recupero è da intendersi compreso all'intervallo dei limiti di accettabilità specifici.
- Per la prova Sommatoria il criterio utilizzato è Lower Bound ovvero i composti < LQ sono considerati pari a 0 e il limite di quantificazione è pari al maggiore dei LQ dei singoli parametri costituenti la Sommatoria stessa.
- La Revisione del Rapporto di Prova sostituisce e annulla il documento precedente.
- Per il campionamento eseguito da Heratech il numero del Verbale di Campionamento corrisponde al codice di identificazione campione (ID), diversamente sarà indicato il riferimento al verbale nel campo 'NOTE SUL CAMPIONE'.
- Il campo 'Data fine analisi' della prova indica la data di registrazione del risultato nel sistema informatico LIMS.
- Il valore di LQ riportato è corretto per i fattori di scala, quali pesate e diluizioni.
- Nel caso di campionamento effettuato da personale HERAtech Laboratori, esso è accreditato per le seguenti matrici e con i seguenti metodi: Acque destinate al consumo umano APATCNR IRSA 1030 Man 29 2003

Acque di scarico APATCNR IRSA 1030 Man 29 2003

Superfici ambienti del settore alimentare ISO 18593:2018

Rifiuti UNI 10802:2013

Suoli DM 13/09/1999 SO n 185 GU n 248 21/10/1999 Met I.1

- Le prove riportate in questo rapporto di prova contrassegnate, nella colonna note:
- con il simbolo A sono eseguite presso laboratorio Bologna, Via Setta n. 4 40037 Sasso Marconi (BO)
- con il simbolo * non rientrano nell'accreditamento ACCREDIA di questo laboratorio. Le modalità descritte nell'1.09.00 Campionamento non sono oggetto di accreditamento. Per il campione delle emissione i riferimenti all'accreditamento sono individuabili in ogni metodo di prova.
- con il simbolo #* sono eseguite presso laboratorio terzo qualificato e sono da considerarsi non accreditate
- con il simbolo £ sono eseguite presso laboratorio terzo qualificato e sono da considerarsi Accreditate
- con il simbolo \$ sono eseguite/fornite dal cliente e riportate come informazione aggiuntiva. La responsabilità della correttezza del dato e/o dell'idoneo campionamento è completamente a carico del Cliente.
 - (°) indica che la Data inizio analisi è stata ricondotta alla data di accettazione per impossibilità di automatismi.

Per l'espressione del risultato delle prove microbiologiche di conteggio (UFC), si riporta sempre il risultato numerico (come richiesto da normativa) considerando che:

- "O colonie" corrisponde a "colonie non rilevate"
- "3-9 colonie" corrisponde a "stimate" in quanto inferiore al limite di determinazione pari a 10
- "1-2 colonie" corrispondenti a presenti. Inferiori al limite di rilevabilità pari a 3

LABORATORI

LAB N° 0110 L

Pagina 1 di 3

RAPPORTO DI PROVA N.24080014

Prova richiesta da: COMUNE DI GIUGLIANO IN CAMPANIA

Corso Campano, 200 80014 Giugliano in Campania

Matrice: ACQUE DESTINATE AL CONSUMO UMANO

Descrizione del campione: Rubinetto su fuoriterra - via Colonne (angolo via Gioberti)

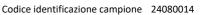
Prelevato il: 14/10/2024

Prelevato da: RTI HYDROLAB STANTE per conto Heratech Laboratori

I.O. di Campionamento: PT06 Rev. in vigore *

Consegnato il: 15/10/2024

Data inizio analisi campione: 15/10/2024 Data fine analisi campione: 23/10/2024


Riferimenti Normativi: (1) D.Lgs 18/2023

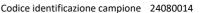
Parametro	Unità di misura	Risultato	Incertezza	Recupero %	Limite Min	Limite Max	Rif. N	Note
Metodo				Data iniz	zio analisi	Data fine analisi		
PARAMETRI BIOLOGICI E TOSSICO	LOGICI							
CLOSTRIDIUM PERFRINGENS (SPORE COMPRESE)	UFC/100 mL	0				0	(1)	А
UNI EN ISO 14189:2016		° 15,	/10/2024	16/10/2024				
ANALISI MICROBIOLOGICHE								
BATTERI COLIFORMI	UFC/100 mL	0				0	(1)	Α
UNI EN ISO 9308-1:2017					° 15,	/10/2024	16/10/20	024
CONTEGGIO DELLE COLONIE A 22°C	UFC/mL	0						Α
UNI EN ISO 6222:2001					° 15,	/10/2024	18/10/20	024
ESCHERICHIA COLI	UFC/100 mL	0				0	(1)	Α
UNI EN ISO 9308-1:2017		<u> </u>				/10/2024	16/10/20	024

Documento firmato digitalmente ai sensi della normativa vigente da:

Pagina 2 di 3

LABORATORI

LAB N° 0110 L


RAPPORTO DI PROVA N.24080014

Parametro	Unità di misura	Risultato	Incertezza	Recupero %	Limite Min	Limite Max	Rif. N	No	ote
Metodo					Data iniz	zio analisi	Data fine	analisi	
MISURE ESEGUITE SUL CAMPO									
CLORO RESIDUO LIBERO	mg/L	0,09	± 0,03						# *
APAT CNR IRSA 4080 Man 29 2003									
TORBIDITA`	NTU	0,39	± 0,04			1	(1)		#*
APAT CNR IRSA 2110 Man 29 2003									
PARAMETRI FISICI, CHIMICI E CHI	MICO-FISICI								
COLORE	unità Pt/Co	< 5						Α	T
APAT CNR IRSA 2020 C Man 29 2003				-	° 16/	10/2024	16/10/2024		
CONCENTRAZIONE IONI IDROGENO	unità pH a 20°C	7,32	± 0,20		6,5	9,5	(1)	Α	
APAT CNR IRSA 2060 Man 29 2003					° 15/	10/2024	16/10/2	024	
CONDUTTIVITA`	μS/cm a 20°C	751	± 75			2500	(1)	Α	
APAT CNR IRSA 2030 Man 29 2003					° 15/	10/2024	16/10/2024		
ODORE	TASSO DI DILUIZIONE	< 1						А	*
APAT CNR IRSA 2050 Man 29 2003				-	° 15/	10/2024	15/10/2	024	
SAPORE	-	INSAPORE							# *
APAT CNR IRSA 2080 Man 29 2003					° 15/	10/2024	23/10/2	024	
TIPO DI ODORE	-	ASSENTE						Α	*
APAT CNR IRSA 2050 Man 29 2003					° 15/	10/2024	15/10/2	024	
METALLI E SPECIE METALLICHE									
FERRO	μg/L	11	± 3			200	(1)	Α	T
UNI EN ISO 15587-2:2002 + UNI EN ISO 17294-2:202	23		-	-	° 15/	10/2024	23/10/2	024	

Documento firmato digitalmente ai sensi della normativa vigente da:

dott. Paolo Morelli Responsabile Settore Acque Ordine Interprovinciale dei Chimici dell'Emilia Romagna Iscrizione n° A 1555

Documento firmato digitalmente ai sensi della normativa vigente da:

LAB N° 0110 L

Pagina 3 di 3

RAPPORTO DI PROVA N.24080014

NOTE:

- Il presente rapporto di prova si riferisce esclusivamente ai campioni sottoposti a prova. Il laboratorio non è responsabile dell'identificazione del campione e della data di prelievo se non ne ha effettuato il campionamento e la consegna: i risultati si riferiscono al campione così come ricevuto.
- Il presente rapporto di prova non può essere riprodotto parzialmente senza autorizzazione scritta del laboratorio.
- Documento con firma digitale avanzata ai sensi della normativa vigente.
- I metodi di prova relativi al presente documento sono disponibili per la consultazione a richiesta del cliente.
- I dettagli relativi al campionamento sono registrati sul foglio di prelievo disponibile presso il laboratorio.
- Per le prove chimiche e radiochimiche l'incertezza estesa è calcolata in accordo con il documento ACCREDIA DT-0002 Rev. 1 2000; per tutte le prove si utilizza il fattore di copertura K = 2 ed una probabilità p = 0,95.
- Per le prove microbiologiche l'incertezza è calcolata come intervallo di confidenza al 95%.
- Ai fini del calcolo dell'incertezza della sommatoria di più prove, l'incertezza di una prova con valore <LQ è considerata nulla.
- Il fattore di recupero è riportato nel rapporto di prova quando è espressamente richiesto da Cliente. Ove non espressamente indicato, il recupero non è stato utilizzato nei calcoli.
- Nel caso di metodi che prevedono fasi di estrazione/purificazione, ove non espressamente indicato, il valore di recupero è da intendersi compreso all'intervallo dei limiti di accettabilità specifici.
- Per la prova Sommatoria il criterio utilizzato è Lower Bound ovvero i composti < LQ sono considerati pari a 0 e il limite di quantificazione è pari al maggiore dei LQ dei singoli parametri costituenti la Sommatoria stessa.
- La Revisione del Rapporto di Prova sostituisce e annulla il documento precedente.
- Per il campionamento eseguito da Heratech il numero del Verbale di Campionamento corrisponde al codice di identificazione campione (ID), diversamente sarà indicato il riferimento al verbale nel campo 'NOTE SUL CAMPIONE'.
- Il campo 'Data fine analisi' della prova indica la data di registrazione del risultato nel sistema informatico LIMS.
- Il valore di LQ riportato è corretto per i fattori di scala, quali pesate e diluizioni.
- Nel caso di campionamento effettuato da personale HERAtech Laboratori, esso è accreditato per le seguenti matrici e con i seguenti metodi: Acque destinate al consumo umano APATCNR IRSA 1030 Man 29 2003

Acque di scarico APATCNR IRSA 1030 Man 29 2003

Superfici ambienti del settore alimentare ISO 18593:2018

Rifiuti UNI 10802:2013

Suoli DM 13/09/1999 SO n 185 GU n 248 21/10/1999 Met I.1

- Le prove riportate in questo rapporto di prova contrassegnate, nella colonna note:
- con il simbolo A sono eseguite presso laboratorio Bologna, Via Setta n. 4 40037 Sasso Marconi (BO)
- con il simbolo * non rientrano nell'accreditamento ACCREDIA di questo laboratorio. Le modalità descritte nell'1.09.00 Campionamento non sono oggetto di accreditamento. Per il campione delle emissione i riferimenti all'accreditamento sono individuabili in ogni metodo di prova.
- con il simbolo #* sono eseguite presso laboratorio terzo qualificato e sono da considerarsi non accreditate
- con il simbolo £ sono eseguite presso laboratorio terzo qualificato e sono da considerarsi Accreditate
- con il simbolo \$ sono eseguite/fornite dal cliente e riportate come informazione aggiuntiva. La responsabilità della correttezza del dato e/o dell'idoneo campionamento è completamente a carico del Cliente.
 - (°) indica che la Data inizio analisi è stata ricondotta alla data di accettazione per impossibilità di automatismi.

Per l'espressione del risultato delle prove microbiologiche di conteggio (UFC), si riporta sempre il risultato numerico (come richiesto da normativa) considerando che:

- "O colonie" corrisponde a "colonie non rilevate"
- "3-9 colonie" corrisponde a "stimate" in quanto inferiore al limite di determinazione pari a 10
- "1-2 colonie" corrispondenti a presenti. Inferiori al limite di rilevabilità pari a 3

LABORATORI

LAB N° 0110 L

Pagina 1 di 3

RAPPORTO DI PROVA N.24080015

Prova richiesta da: COMUNE DI GIUGLIANO IN CAMPANIA

Corso Campano, 200 80014 Giugliano in Campania

Matrice: ACQUE DESTINATE AL CONSUMO UMANO

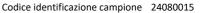
Descrizione del campione: Rubinetto su fuoriterra in via Innamorati (adiacente pizzeria La Capricciosa)

Prelevato il: 14/10/2024

Prelevato da: RTI HYDROLAB STANTE per conto Heratech Laboratori

I.O. di Campionamento: PT06 Rev. in vigore *

Consegnato il: 15/10/2024


Data inizio analisi campione: 15/10/2024 Data fine analisi campione: 23/10/2024

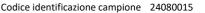
Riferimenti Normativi: (1) D.Lgs 18/2023

Parametro	Unità di misura	Risultato	Incertezza	Recupero %	Limite Min	Limite Max	Rif. N	Note
Metodo					Data iniz	zio analisi	Data fine analisi	
PARAMETRI BIOLOGICI E TOSSICO	LOGICI							
CLOSTRIDIUM PERFRINGENS (SPORE COMPRESE)	UFC/100 mL	0				0	(1)	А
UNI EN ISO 14189:2016							16/10/2024	
ANALISI MICROBIOLOGICHE								
BATTERI COLIFORMI	UFC/100 mL	0				0	(1)	Α
UNI EN ISO 9308-1:2017					° 15,	/10/2024	16/10/20	024
CONTEGGIO DELLE COLONIE A 22°C	UFC/mL	0						Α
UNI EN ISO 6222:2001							18/10/20	024
ESCHERICHIA COLI	UFC/100 mL	0				0	(1)	Α
UNI EN ISO 9308-1:2017		•	•	•	° 15,	/10/2024	16/10/20	024

Documento firmato digitalmente ai sensi della normativa vigente da:

Pagina 2 di 3

LAB N° 0110 L


RAPPORTO DI PROVA N.24080015

Parametro	Unità di misura	Risultato	Incertezza	Recupero %	Limite Min	Limite Max	Rif. N	No	ote
Metodo					Data iniz	zio analisi	Data fine a	analisi	
MISURE ESEGUITE SUL CAMPO									
CLORO RESIDUO LIBERO	mg/L	0,12	± 0,04						#*
APAT CNR IRSA 4080 Man 29 2003									
TORBIDITA`	NTU	0,38	± 0,04			1	(1)		# *
APAT CNR IRSA 2110 Man 29 2003									
PARAMETRI FISICI, CHIMICI E CHI	MICO-FISICI								
COLORE	unità Pt/Co	< 5						Α	
APAT CNR IRSA 2020 C Man 29 2003					° 16,	/10/2024	16/10/2024		
CONCENTRAZIONE IONI IDROGENO	unità pH a 20°C	7,33	± 0,20		6,5	9,5	(1)	Α	
APAT CNR IRSA 2060 Man 29 2003						/10/2024	16/10/20	024	
CONDUTTIVITA`	μS/cm a 20°C	770	± 77			2500	(1)	Α	
APAT CNR IRSA 2030 Man 29 2003					° 15,	/10/2024	16/10/2024		
ODORE	TASSO DI DILUIZIONE	< 1						А	*
APAT CNR IRSA 2050 Man 29 2003					° 15,	/10/2024	15/10/20	024	
SAPORE	-	INSAPORE							#*
APAT CNR IRSA 2080 Man 29 2003					° 15,	/10/2024	23/10/20	024	
TIPO DI ODORE	-	ASSENTE						Α	*
APAT CNR IRSA 2050 Man 29 2003					° 15,	/10/2024	15/10/20	024	
METALLI E SPECIE METALLICHE									
FERRO	μg/L	< 10				200	(1)	Α	
UNI EN ISO 15587-2:2002 + UNI EN ISO 17294-2:202	3		-	-	° 15,	/10/2024	23/10/20	024	

Documento firmato digitalmente ai sensi della normativa vigente da:

dott. Paolo Morelli Responsabile Settore Acque Ordine Interprovinciale dei Chimici dell'Emilia Romagna Iscrizione n° A 1555

Documento firmato digitalmente ai sensi della normativa vigente da:

Pagina 3 di 3

LAB N° 0110 L

RAPPORTO DI PROVA N.24080015

NOTE:

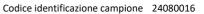
- Il presente rapporto di prova si riferisce esclusivamente ai campioni sottoposti a prova. Il laboratorio non è responsabile dell'identificazione del campione e della data di prelievo se non ne ha effettuato il campionamento e la consegna: i risultati si riferiscono al campione così come ricevuto.
- Il presente rapporto di prova non può essere riprodotto parzialmente senza autorizzazione scritta del laboratorio.
- Documento con firma digitale avanzata ai sensi della normativa vigente.
- I metodi di prova relativi al presente documento sono disponibili per la consultazione a richiesta del cliente.
- I dettagli relativi al campionamento sono registrati sul foglio di prelievo disponibile presso il laboratorio.
- Per le prove chimiche e radiochimiche l'incertezza estesa è calcolata in accordo con il documento ACCREDIA DT-0002 Rev. 1 2000; per tutte le prove si utilizza il fattore di copertura K = 2 ed una probabilità p = 0,95.
- Per le prove microbiologiche l'incertezza è calcolata come intervallo di confidenza al 95%.
- Ai fini del calcolo dell'incertezza della sommatoria di più prove, l'incertezza di una prova con valore <LQ è considerata nulla.
- Il fattore di recupero è riportato nel rapporto di prova quando è espressamente richiesto da Cliente. Ove non espressamente indicato, il recupero non è stato utilizzato nei calcoli.
- Nel caso di metodi che prevedono fasi di estrazione/purificazione, ove non espressamente indicato, il valore di recupero è da intendersi compreso all'intervallo dei limiti di accettabilità specifici.
- Per la prova Sommatoria il criterio utilizzato è Lower Bound ovvero i composti < LQ sono considerati pari a 0 e il limite di quantificazione è pari al maggiore dei LQ dei singoli parametri costituenti la Sommatoria stessa.
- La Revisione del Rapporto di Prova sostituisce e annulla il documento precedente.
- Per il campionamento eseguito da Heratech il numero del Verbale di Campionamento corrisponde al codice di identificazione campione (ID), diversamente sarà indicato il riferimento al verbale nel campo 'NOTE SUL CAMPIONE'.
- Il campo 'Data fine analisi' della prova indica la data di registrazione del risultato nel sistema informatico LIMS.
- Il valore di LQ riportato è corretto per i fattori di scala, quali pesate e diluizioni.
- Nel caso di campionamento effettuato da personale HERAtech Laboratori, esso è accreditato per le seguenti matrici e con i seguenti metodi: Acque destinate al consumo umano APATCNR IRSA 1030 Man 29 2003

Acque di scarico APATCNR IRSA 1030 Man 29 2003

Superfici ambienti del settore alimentare ISO 18593:2018

Rifiuti UNI 10802:2013

Suoli DM 13/09/1999 SO n 185 GU n 248 21/10/1999 Met I.1


- Le prove riportate in questo rapporto di prova contrassegnate, nella colonna note:
- con il simbolo A sono eseguite presso laboratorio Bologna, Via Setta n. 4 40037 Sasso Marconi (BO)
- con il simbolo * non rientrano nell'accreditamento ACCREDIA di questo laboratorio. Le modalità descritte nell'1.09.00 Campionamento non sono oggetto di accreditamento. Per il campione delle emissione i riferimenti all'accreditamento sono individuabili in ogni metodo di prova.
- con il simbolo #* sono eseguite presso laboratorio terzo qualificato e sono da considerarsi non accreditate
- con il simbolo £ sono eseguite presso laboratorio terzo qualificato e sono da considerarsi Accreditate
- con il simbolo \$ sono eseguite/fornite dal cliente e riportate come informazione aggiuntiva. La responsabilità della correttezza del dato e/o dell'idoneo campionamento è completamente a carico del Cliente.
 - (°) indica che la Data inizio analisi è stata ricondotta alla data di accettazione per impossibilità di automatismi.

Per l'espressione del risultato delle prove microbiologiche di conteggio (UFC), si riporta sempre il risultato numerico (come richiesto da normativa) considerando che:

- "O colonie" corrisponde a "colonie non rilevate"
- "3-9 colonie" corrisponde a "stimate" in quanto inferiore al limite di determinazione pari a 10
- "1-2 colonie" corrispondenti a presenti. Inferiori al limite di rilevabilità pari a 3

Pagina 1 di 3

LABORATORI

4,

LAB N° 0110 L

RAPPORTO DI PROVA N.24080016

Prova richiesta da: COMUNE DI GIUGLIANO IN CAMPANIA

Corso Campano, 200 80014 Giugliano in Campania

Matrice: ACQUE DESTINATE AL CONSUMO UMANO

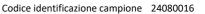
Descrizione del campione: Rubinetto su fuoriterra - Via Licola Mare civ 278

Prelevato il: 14/10/2024

Prelevato da: RTI HYDROLAB STANTE per conto Heratech Laboratori

I.O. di Campionamento: PT06 Rev. in vigore *

Consegnato il: 15/10/2024


Data inizio analisi campione: 15/10/2024 Data fine analisi campione: 23/10/2024

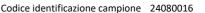
Riferimenti Normativi: (1) D.Lgs 18/2023

Parametro	Unità di misura	Risultato	Incertezza	Recupero %	Limite Min	Limite Max	Rif. N	Note
Metodo				Data inizio analisi		Data fine analisi		
PARAMETRI BIOLOGICI E TOSSICO	LOGICI							
CLOSTRIDIUM PERFRINGENS (SPORE COMPRESE)	UFC/100 mL	0				0	(1)	А
UNI EN ISO 14189:2016		° 15/	10/2024	16/10/2024				
ANALISI MICROBIOLOGICHE								
BATTERI COLIFORMI	UFC/100 mL	0				0	(1)	Α
UNI EN ISO 9308-1:2017	•				° 15/	10/2024	16/10/2	024
CONTEGGIO DELLE COLONIE A 22°C	UFC/mL	0						Α
UNI EN ISO 6222:2001					° 15/	10/2024	18/10/2	024
ESCHERICHIA COLI	UFC/100 mL	0				0	(1)	Α
UNI EN ISO 9308-1:2017					° 15/	10/2024	16/10/2	024

Documento firmato digitalmente ai sensi della normativa vigente da:

Pagina 2 di 3

LAB N° 0110 L


RAPPORTO DI PROVA N.24080016

Parametro	Unità di misura	Risultato	Incertezza	Recupero %	Limite Min	Limite Max	Rif. N	No	ote
Metodo					Data iniz	zio analisi	Data fine a	analisi	
MISURE ESEGUITE SUL CAMPO									
CLORO RESIDUO LIBERO	mg/L	0,16	± 0,05						#*
APAT CNR IRSA 4080 Man 29 2003									
TORBIDITA`	NTU	0,31	± 0,03			1	(1)		# *
APAT CNR IRSA 2110 Man 29 2003									
PARAMETRI FISICI, CHIMICI E CHI	MICO-FISICI								
COLORE	unità Pt/Co	< 5						Α	
APAT CNR IRSA 2020 C Man 29 2003					° 16,	/10/2024	16/10/2024		
CONCENTRAZIONE IONI IDROGENO	unità pH a 20°C	7,19	± 0,20		6,5	9,5	(1)	Α	
APAT CNR IRSA 2060 Man 29 2003						/10/2024	16/10/20	024	
CONDUTTIVITA`	μS/cm a 20°C	783	± 78			2500	(1)	Α	
APAT CNR IRSA 2030 Man 29 2003					° 15,	/10/2024	16/10/2024		
ODORE	TASSO DI DILUIZIONE	< 1						А	*
APAT CNR IRSA 2050 Man 29 2003					° 15,	/10/2024	15/10/20	024	
SAPORE	-	INSAPORE							# *
APAT CNR IRSA 2080 Man 29 2003					° 15,	/10/2024	23/10/20	024	
TIPO DI ODORE	-	ASSENTE						Α	*
APAT CNR IRSA 2050 Man 29 2003					° 15,	/10/2024	15/10/20	024	
METALLI E SPECIE METALLICHE									
FERRO	μg/L	< 10				200	(1)	Α	
UNI EN ISO 15587-2:2002 + UNI EN ISO 17294-2:202	3		-	-	° 15,	/10/2024	23/10/20	024	

Documento firmato digitalmente ai sensi della normativa vigente da:

dott. Paolo Morelli Responsabile Settore Acque Ordine Interprovinciale dei Chimici dell'Emilia Romagna Iscrizione n° A 1555

Documento firmato digitalmente ai sensi della normativa vigente da:

LAB N° 0110 L

Pagina 3 di 3

RAPPORTO DI PROVA N.24080016

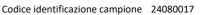
NOTE:

- Il presente rapporto di prova si riferisce esclusivamente ai campioni sottoposti a prova. Il laboratorio non è responsabile dell'identificazione del campione e della data di prelievo se non ne ha effettuato il campionamento e la consegna: i risultati si riferiscono al campione così come ricevuto.
- Il presente rapporto di prova non può essere riprodotto parzialmente senza autorizzazione scritta del laboratorio.
- Documento con firma digitale avanzata ai sensi della normativa vigente.
- I metodi di prova relativi al presente documento sono disponibili per la consultazione a richiesta del cliente.
- I dettagli relativi al campionamento sono registrati sul foglio di prelievo disponibile presso il laboratorio.
- Per le prove chimiche e radiochimiche l'incertezza estesa è calcolata in accordo con il documento ACCREDIA DT-0002 Rev. 1 2000; per tutte le prove si utilizza il fattore di copertura K = 2 ed una probabilità p = 0,95.
- Per le prove microbiologiche l'incertezza è calcolata come intervallo di confidenza al 95%.
- Ai fini del calcolo dell'incertezza della sommatoria di più prove, l'incertezza di una prova con valore <LQ è considerata nulla.
- Il fattore di recupero è riportato nel rapporto di prova quando è espressamente richiesto da Cliente. Ove non espressamente indicato, il recupero non è stato utilizzato nei calcoli.
- Nel caso di metodi che prevedono fasi di estrazione/purificazione, ove non espressamente indicato, il valore di recupero è da intendersi compreso all'intervallo dei limiti di accettabilità specifici.
- Per la prova Sommatoria il criterio utilizzato è Lower Bound ovvero i composti < LQ sono considerati pari a 0 e il limite di quantificazione è pari al maggiore dei LQ dei singoli parametri costituenti la Sommatoria stessa.
- La Revisione del Rapporto di Prova sostituisce e annulla il documento precedente.
- Per il campionamento eseguito da Heratech il numero del Verbale di Campionamento corrisponde al codice di identificazione campione (ID), diversamente sarà indicato il riferimento al verbale nel campo 'NOTE SUL CAMPIONE'.
- Il campo 'Data fine analisi' della prova indica la data di registrazione del risultato nel sistema informatico LIMS.
- Il valore di LQ riportato è corretto per i fattori di scala, quali pesate e diluizioni.
- Nel caso di campionamento effettuato da personale HERAtech Laboratori, esso è accreditato per le seguenti matrici e con i seguenti metodi: Acque destinate al consumo umano APATCNR IRSA 1030 Man 29 2003

Acque di scarico APATCNR IRSA 1030 Man 29 2003

Superfici ambienti del settore alimentare ISO 18593:2018

Rifiuti UNI 10802:2013


Suoli DM 13/09/1999 SO n 185 GU n 248 21/10/1999 Met I.1

- Le prove riportate in questo rapporto di prova contrassegnate, nella colonna note:
- con il simbolo A sono eseguite presso laboratorio Bologna, Via Setta n. 4 40037 Sasso Marconi (BO)
- con il simbolo * non rientrano nell'accreditamento ACCREDIA di questo laboratorio. Le modalità descritte nell'1.09.00 Campionamento non sono oggetto di accreditamento. Per il campione delle emissione i riferimenti all'accreditamento sono individuabili in ogni metodo di prova.
- con il simbolo #* sono eseguite presso laboratorio terzo qualificato e sono da considerarsi non accreditate
- con il simbolo £ sono eseguite presso laboratorio terzo qualificato e sono da considerarsi Accreditate
- con il simbolo \$ sono eseguite/fornite dal cliente e riportate come informazione aggiuntiva. La responsabilità della correttezza del dato e/o dell'idoneo campionamento è completamente a carico del Cliente.
 - (°) indica che la Data inizio analisi è stata ricondotta alla data di accettazione per impossibilità di automatismi.

Per l'espressione del risultato delle prove microbiologiche di conteggio (UFC), si riporta sempre il risultato numerico (come richiesto da normativa) considerando che:

- "O colonie" corrisponde a "colonie non rilevate"
- "3-9 colonie" corrisponde a "stimate" in quanto inferiore al limite di determinazione pari a 10
- "1-2 colonie" corrispondenti a presenti. Inferiori al limite di rilevabilità pari a 3

LAB N° 0110 L

Pagina 1 di 3

RAPPORTO DI PROVA N.24080017

Prova richiesta da: COMUNE DI GIUGLIANO IN CAMPANIA

Corso Campano, 200 80014 Giugliano in Campania

Matrice: ACQUE DESTINATE AL CONSUMO UMANO

Descrizione del campione: Rubinetto su fuoriterra in via S. Nullo (aiuola inizio rampa di discesa al Country Park)

Prelevato il: 14/10/2024

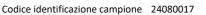
Prelevato da: RTI HYDROLAB STANTE per conto Heratech Laboratori

I.O. di Campionamento: PT06 Rev. in vigore *

Consegnato il: 15/10/2024

Data inizio analisi campione: 15/10/2024 Data fine analisi campione: 23/10/2024

Riferimenti Normativi: (1) D.Lgs 18/2023


Parametro	Unità di misura	Risultato	Incertezza	Recupero %	Limite Min	Limite Max	Rif. N	Note
Metodo					Data iniz	zio analisi	Data fine analisi	
PARAMETRI BIOLOGICI E TOSSICO	LOGICI							
CLOSTRIDIUM PERFRINGENS (SPORE COMPRESE)	UFC/100 mL	0				0	(1)	А
UNI EN ISO 14189:2016							16/10/2024	
ANALISI MICROBIOLOGICHE								
BATTERI COLIFORMI	UFC/100 mL	0				0	(1)	Α
UNI EN ISO 9308-1:2017					° 15,	/10/2024	16/10/20	024
CONTEGGIO DELLE COLONIE A 22°C	UFC/mL	0						Α
UNI EN ISO 6222:2001							18/10/20	024
ESCHERICHIA COLI	UFC/100 mL	0				0	(1)	Α
UNI EN ISO 9308-1:2017		•	•	•	° 15,	/10/2024	16/10/20	024

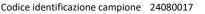
Documento firmato digitalmente ai sensi della normativa vigente da:

dott.ssa Laura de Lellis Responsabile Settore Biologico Ordine dei Biologi dell'Emilia Romagna e delle Marche Iscrizione n° ERM_A01118

Cap. Soc. i.v. € 2.000.000,00 - Società soggetta alla direzione e al coordinamento di Hera S.p.A.

Pagina 2 di 3

LAB N° 0110 L


RAPPORTO DI PROVA N.24080017

Parametro	Unità di misura	Risultato	Incertezza	Recupero %	Limite Min	Limite Max	Rif. N	No	ote
Metodo					Data ini:	zio analisi	Data fine a	analisi	
MISURE ESEGUITE SUL CAMPO									
CLORO RESIDUO LIBERO	mg/L	0,11	± 0,03						#*
APAT CNR IRSA 4080 Man 29 2003	-								
TORBIDITA`	NTU	0,40	± 0,04			1	(1)		# *
APAT CNR IRSA 2110 Man 29 2003									
PARAMETRI FISICI, CHIMICI E CHI	MICO-FISICI								
COLORE	unità Pt/Co	< 5						Α	
APAT CNR IRSA 2020 C Man 29 2003					° 16,	/10/2024	16/10/2024		
CONCENTRAZIONE IONI IDROGENO	unità pH a 20°C	7,51	± 0,20		6,5	9,5	(1)	Α	
APAT CNR IRSA 2060 Man 29 2003						/10/2024	16/10/2	024	
CONDUTTIVITA`	μS/cm a 20°C	784	± 78			2500	(1)	Α	
APAT CNR IRSA 2030 Man 29 2003	•				° 15,	/10/2024	16/10/2024		
ODORE	TASSO DI DILUIZIONE	< 1						А	*
APAT CNR IRSA 2050 Man 29 2003					° 15,	/10/2024	15/10/2	024	
SAPORE	-	INSAPORE							# *
APAT CNR IRSA 2080 Man 29 2003					° 15,	/10/2024	23/10/2	024	
TIPO DI ODORE	-	ASSENTE						Α	*
APAT CNR IRSA 2050 Man 29 2003					° 15,	/10/2024	15/10/2	024	
METALLI E SPECIE METALLICHE									
FERRO	μg/L	15	± 4			200	(1)	Α	
UNI EN ISO 15587-2:2002 + UNI EN ISO 17294-2:202	3		-		° 15,	/10/2024	23/10/2	024	

Documento firmato digitalmente ai sensi della normativa vigente da:

dott. Paolo Morelli Responsabile Settore Acque Ordine Interprovinciale dei Chimici dell'Emilia Romagna Iscrizione n° A 1555

Documento firmato digitalmente ai sensi della normativa vigente da:

LAB N° 0110 L

Pagina 3 di 3

RAPPORTO DI PROVA N.24080017

NOTE:

- Il presente rapporto di prova si riferisce esclusivamente ai campioni sottoposti a prova. Il laboratorio non è responsabile dell'identificazione del campione e della data di prelievo se non ne ha effettuato il campionamento e la consegna: i risultati si riferiscono al campione così come ricevuto.
- Il presente rapporto di prova non può essere riprodotto parzialmente senza autorizzazione scritta del laboratorio.
- Documento con firma digitale avanzata ai sensi della normativa vigente.
- I metodi di prova relativi al presente documento sono disponibili per la consultazione a richiesta del cliente.
- I dettagli relativi al campionamento sono registrati sul foglio di prelievo disponibile presso il laboratorio.
- Per le prove chimiche e radiochimiche l'incertezza estesa è calcolata in accordo con il documento ACCREDIA DT-0002 Rev. 1 2000; per tutte le prove si utilizza il fattore di copertura K = 2 ed una probabilità p = 0,95.
- Per le prove microbiologiche l'incertezza è calcolata come intervallo di confidenza al 95%.
- Ai fini del calcolo dell'incertezza della sommatoria di più prove, l'incertezza di una prova con valore <LQ è considerata nulla.
- Il fattore di recupero è riportato nel rapporto di prova quando è espressamente richiesto da Cliente. Ove non espressamente indicato, il recupero non è stato utilizzato nei calcoli.
- Nel caso di metodi che prevedono fasi di estrazione/purificazione, ove non espressamente indicato, il valore di recupero è da intendersi compreso all'intervallo dei limiti di accettabilità specifici.
- Per la prova Sommatoria il criterio utilizzato è Lower Bound ovvero i composti < LQ sono considerati pari a 0 e il limite di quantificazione è pari al maggiore dei LQ dei singoli parametri costituenti la Sommatoria stessa.
- La Revisione del Rapporto di Prova sostituisce e annulla il documento precedente.
- Per il campionamento eseguito da Heratech il numero del Verbale di Campionamento corrisponde al codice di identificazione campione (ID), diversamente sarà indicato il riferimento al verbale nel campo 'NOTE SUL CAMPIONE'.
- Il campo 'Data fine analisi' della prova indica la data di registrazione del risultato nel sistema informatico LIMS.
- Il valore di LQ riportato è corretto per i fattori di scala, quali pesate e diluizioni.
- Nel caso di campionamento effettuato da personale HERAtech Laboratori, esso è accreditato per le seguenti matrici e con i seguenti metodi: Acque destinate al consumo umano APATCNR IRSA 1030 Man 29 2003

Acque di scarico APATCNR IRSA 1030 Man 29 2003

Superfici ambienti del settore alimentare ISO 18593:2018

Rifiuti UNI 10802:2013

Suoli DM 13/09/1999 SO n 185 GU n 248 21/10/1999 Met I.1

- Le prove riportate in questo rapporto di prova contrassegnate, nella colonna note:
- con il simbolo A sono eseguite presso laboratorio Bologna, Via Setta n. 4 40037 Sasso Marconi (BO)
- con il simbolo * non rientrano nell'accreditamento ACCREDIA di questo laboratorio. Le modalità descritte nell'1.09.00 Campionamento non sono oggetto di accreditamento. Per il campione delle emissione i riferimenti all'accreditamento sono individuabili in ogni metodo di prova.
- con il simbolo #* sono eseguite presso laboratorio terzo qualificato e sono da considerarsi non accreditate
- con il simbolo £ sono eseguite presso laboratorio terzo qualificato e sono da considerarsi Accreditate
- con il simbolo \$ sono eseguite/fornite dal cliente e riportate come informazione aggiuntiva. La responsabilità della correttezza del dato e/o dell'idoneo campionamento è completamente a carico del Cliente.
 - (°) indica che la Data inizio analisi è stata ricondotta alla data di accettazione per impossibilità di automatismi.

Per l'espressione del risultato delle prove microbiologiche di conteggio (UFC), si riporta sempre il risultato numerico (come richiesto da normativa) considerando che:

- "O colonie" corrisponde a "colonie non rilevate"
- "3-9 colonie" corrisponde a "stimate" in quanto inferiore al limite di determinazione pari a 10
- "1-2 colonie" corrispondenti a presenti. Inferiori al limite di rilevabilità pari a 3